Creating decision rules and locating rejection regions

Consider H_0 : average weight of a male student in a certain college is 68kg. H_1 : this average is not equal to 68. Formally:

Consider H_0 : average weight of a male student in a certain college is 68kg. H_1 : this average is not equal to 68. Formally:

 $H_0: \mu = 68$ $H_1: \mu \neq 68$

The alternative allows for the possibility of $\mu < 68$ or $\mu > 68$. Evidence?

Consider H_0 : average weight of a male student in a certain college is 68kg. H_1 : this average is not equal to 68. Formally:

 $H_0: \mu = 68$ $H_1: \mu \neq 68$

The alternative allows for the possibility of $\mu <$ 68 or $\mu >$ 68.

Evidence?

A sample mean that falls close to 68 would be considered evidence in favor of H_0 ; but considerably less or more than 68 would be evidence against H_0 .

Test statistic?

Consider H_0 : average weight of a male student in a certain college is 68kg. H_1 : this average is not equal to 68. Formally:

 $H_0: \mu = 68$ $H_1: \mu \neq 68$

The alternative allows for the possibility of $\mu <$ 68 or $\mu >$ 68.

Evidence?

A sample mean that falls close to 68 would be considered evidence in favor of H_0 ; but considerably less or more than 68 would be evidence against H_0 .

Test statistic?

The sample mean.

What kind of data will lead you to reject H_0 ?

Here is a **proposal for a rejection region:** Reject H_0 if $\overline{X} < 67$ or $\overline{X} > 69$.

What kind of data will lead you to reject H_0 ?

Here is a **proposal for a rejection region:** Reject H_0 if $\overline{X} < 67$ or $\overline{X} > 69$. Good? Bad? No idea?

- Arbitrary choice of the rejection region.
- Visualize the regions on a number line.

Example with a continuous random variable: solution

Assume that the standard deviation for the population of weights is $\sigma = 3.6$.

For large samples, we may substitute sample stdev (S) for σ , if not other estimate of σ is available.

Test statistic?

We will use \overline{X} , since this is a test about μ .

• Sampling distribution?

Sample size is n = 36. Central limit theorem \implies distribution of \overline{X} is approximately normal with $\sigma_{\overline{X}} = \frac{3.6}{6} = 0.6$.

• Decision rule / rejection region?

Reject $H_0: \mu = 68$ if $\overline{X} < 67$ or $\overline{X} > 69$.

Plot: test in action

Reject $H_0: \mu = 68$ if $\overline{X} < 67$ or $\overline{X} > 69$.

Q: What is the probability of rejecting when H_0 is actually true?

 $P(\overline{X} < 67 \text{ or } \overline{X} > 69 \text{ when } H_0 \text{ is true}) = P(Z < a) + P(Z > b),$ and we compute a, b as:

Plot: test in action

Reject H_0 : $\mu = 68$ if $\overline{X} < 67$ or $\overline{X} > 69$.

Q: What is the probability of rejecting when H_0 is actually true?

 $P(\overline{X} < 67 \text{ or } \overline{X} > 69 \text{ when } H_0 \text{ is true}) = P(Z < a) + P(Z > b),$

and we compute *a*, *b* as: The **z-scores!**:

```
true.mu = 68
true.sigma = 3.6
n = 36
a= (67-68)/(true.sigma/sqrt(n))  # a -- the lower cut-off value
b= (69-68)/(true.sigma/sqrt(n))  # b -- the upper cut-off value
c(a,b)
```

[1] -1.666667 1.666667

х

[1] 0.0955807

The level of significance

Uh-oh... 9.5% of all samples of size 36 would lead us to reject $\mu = 68$ kilograms when, in fact, it is true.

Significance level

This error probability is called level of significance of the test, and denoted by α .

- Happy? ... seems too high of a chance of error.
- How to fix?
 - Increase the sample size (try it yourself!), or
 - Widen the fail-to-reject region.

The level of significance

<code>Uh-oh... 9.5% of all samples of size 36 would lead us to reject</code> $\mu=$ 68 kilograms when, in fact, it is true.

Significance level

This error probability is called level of significance of the test, and denoted by $\alpha.$

- Happy? ... seems too high of a chance of error.
- How to fix?
 - Increase the sample size (try it yourself!), or
 - Widen the fail-to-reject region.

But what about H_1 ?

Suppose H_1 is true and $\mu = 70$. What is $P(67 < \overline{X} < 69$ when $\mu = 70)$?

Plot this!

Test significance levels... choices?

Philosophy: Preselection of significance level

Roots of pre-selection of α :

"The maximum risk of making a type I error should be controlled."

- Does not account for values of test statistics that are "close" to the critical region.
- Example: $H_0: \mu = 10$ vs. $H_1: \mu \neq 10$. Observed value z = 1.87.
 - with $\alpha = 0.05$, value not significant. (no reject)
 - but risk of error:

 $P = 2P(Z > 1.87 \text{ when } \mu = 10) = 2(0.0307) = 0.0614.$

- 0.0614 is the probability of obtaining a value of z as large as or larger (in magnitude) than 1.87 when in fact $\mu = 10$.
- \implies Evidence against H_0 is not as strong as that which would result from rejection with $\alpha = 0.05$, but it is important information to the user.
- Indeed, continued use of 'standard' $\alpha=$ 0.05 or 0.01 only a result of what standards have been passed down through the generations.

Attained significance level

So how can we tell the user the important information about **strength of evidence**?

The *p***-value approach**, adopted extensively by users of applied statistics, is designed to give the user an alternative (in terms of a probability) to a mere "reject" or "do not reject" conclusion.

- The P-value computation also gives the user important information when the z-value falls well into the ordinary critical region.
- For example, if z = 2.73, it is informative for the user to observe that P = 2(0.0032) = 0.0064, and thus the z-value is significant at a level considerably less than 0.05.
- It is important to know that under the condition of H_0 , a value of
 - z = 2.73 is an extremely rare event.
 - That is, a value at least that large in magnitude would only occur 64 times in 10,000 experiments!

Graphical representation of *p*-value

Plot this!

Definition

A p-value is the lowest level (of significance) at which the observed value of the test statistic is significant.