Creating decision rules and locating rejection regions

Example with a continuous random variable

Consider H_{0} : average weight of a male student in a certain college is 68 kg . H_{1} : this average is not equal to 68 . Formally:

Example with a continuous random variable

Consider H_{0} : average weight of a male student in a certain college is 68 kg . H_{1} : this average is not equal to 68 . Formally:

$$
\begin{aligned}
& H_{0}: \mu=68 \\
& H_{1}: \mu \neq 68
\end{aligned}
$$

The alternative allows for the possibility of $\mu<68$ or $\mu>68$.

Evidence?

Example with a continuous random variable

Consider H_{0} : average weight of a male student in a certain college is 68 kg . H_{1} : this average is not equal to 68. Formally:

$$
\begin{aligned}
& H_{0}: \mu=68 \\
& H_{1}: \mu \neq 68
\end{aligned}
$$

The alternative allows for the possibility of $\mu<68$ or $\mu>68$.

Evidence?

A sample mean that falls close to 68 would be considered evidence in favor of H_{0}; but considerably less or more than 68 would be evidence against H_{0}.

Test statistic?

Example with a continuous random variable

Consider H_{0} : average weight of a male student in a certain college is 68 kg . H_{1} : this average is not equal to 68. Formally:

$$
\begin{aligned}
& H_{0}: \mu=68 \\
& H_{1}: \mu \neq 68
\end{aligned}
$$

The alternative allows for the possibility of $\mu<68$ or $\mu>68$.

Evidence?

A sample mean that falls close to 68 would be considered evidence in favor of H_{0}; but considerably less or more than 68 would be evidence against H_{0}.

Test statistic?
The sample mean.

What kind of data will lead you to reject H_{0} ?

Here is a proposal for a rejection region: Reject H_{0} if $\bar{X}<67$ or $\bar{X}>69$.

What kind of data will lead you to reject H_{0} ?

Here is a proposal for a rejection region: Reject H_{0} if $\bar{X}<67$ or $\bar{X}>69$. Good? Bad? No idea?

- Arbitrary choice of the rejection region.
- Visualize the regions on a number line.

Example with a continuous random variable: solution

Assume that the standard deviation for the population of weights is $\sigma=3.6$.
For large samples, we may substitute sample stdev (S) for σ, if not other estimate of σ is available.

- Test statistic?

We will use \bar{X}, since this is a test about μ.

- Sampling distribution?

Sample size is $n=36$. Central limit theorem \Longrightarrow distribution of \bar{X} is approximately normal with $\sigma_{\bar{X}}=\frac{3.6}{6}=0.6$.

- Decision rule / rejection region?

Reject $H_{0}: \mu=68$ if $\bar{X}<67$ or $\bar{X}>69$.

Plot: test in action

Reject $H_{0}: \mu=68$ if $\bar{X}<67$ or $\bar{X}>69$.
$Q:$ What is the probability of rejecting when H_{0} is actually true?

$$
P\left(\bar{X}<67 \text { or } \bar{X}>69 \text { when } H_{0} \text { is true }\right)=P(Z<a)+P(Z>b)
$$ and we compute a, b as:

Plot: test in action

$$
\text { Reject } H_{0}: \mu=68 \text { if } \bar{X}<67 \text { or } \bar{X}>69 .
$$

Q : What is the probability of rejecting when H_{0} is actually true?

$$
P\left(\bar{X}<67 \text { or } \bar{X}>69 \text { when } H_{0} \text { is true }\right)=P(Z<a)+P(Z>b)
$$

and we compute a, b as: The \mathbf{z}-scores!:

```
true.mu = 68
```

true.sigma $=3.6$
n = 36
$\mathrm{a}=(67-68) /($ true.sigma/sqrt(n)) \# a -- the lower cut-off valr
b= (69-68)/(true.sigma/sqrt(n)) \# b -- the upper cut-off valr
c (a, b)
[1] -1.666667 1.666667
pnormGC(bound=c $(67,69)$, region="outside", mean $=68$, sd=true.sigma/sqrt (n), graph=TRUE)

Normal Curve, mean $=68, S D=0.6$
Shaded Area $=0.0956$

[1] 0.0955807

The level of significance

Uh-oh... 9.5% of all samples of size 36 would lead us to reject $\mu=68$ kilograms when, in fact, it is true.

Significance level
This error probability is called level of significance of the test, and denoted by α.

- Happy? . . . seems too high of a chance of error.
- How to fix?
- Increase the sample size (try it yourself!), or
- Widen the fail-to-reject region.

The level of significance

Uh-oh... 9.5% of all samples of size 36 would lead us to reject $\mu=68$ kilograms when, in fact, it is true.

Significance level
This error probability is called level of significance of the test, and denoted by α.

- Happy? . . . seems too high of a chance of error.
- How to fix?
- Increase the sample size (try it yourself!), or
- Widen the fail-to-reject region.

But what about H_{1} ?
Suppose H_{1} is true and $\mu=70$. What is $P(67<\bar{X}<69$ when $\mu=70)$?
Plot this!

Test significance levels. . . choices?

Philosophy: Preselection of significance level

Roots of pre-selection of α :
"The maximum risk of making a type I error should be controlled."

- Does not account for values of test statistics that are "close" to the critical region.
- Example: $H_{0}: \mu=10$ vs. $H_{1}: \mu \neq 10$. Observed value $z=1.87$.
- with $\alpha=0.05$, value not significant. (no reject)
- but risk of error:
$P=2 P(Z>1.87$ when $\mu=10)=2(0.0307)=0.0614$.
- 0.0614 is the probability of obtaining a value of z as large as or larger (in magnitude) than 1.87 when in fact $\mu=10$.
- \Longrightarrow Evidence against H_{0} is not as strong as that which would result from rejection with $\alpha=0.05$, but it is important information to the user.
- Indeed, continued use of 'standard' $\alpha=0.05$ or 0.01 only a result of what standards have been passed down through the generations.

Attained significance level

So how can we tell the user the important information about strength of evidence?

The p-value approach, adopted extensively by users of applied statistics, is designed to give the user an alternative (in terms of a probability) to a mere "reject" or "do not reject" conclusion.

- The P-value computation also gives the user important information when the z-value falls well into the ordinary critical region.
- For example, if $z=2.73$, it is informative for the user to observe that $P=2(0.0032)=0.0064$, and thus the z-value is significant at a level considerably less than 0.05 .
- It is important to know that under the condition of H_{0}, a value of $z=2.73$ is an extremely rare event.
- That is, a value at least that large in magnitude would only occur 64 times in 10,000 experiments!

Graphical representation of p-value

Plot this!
Definition
A p-value is the lowest level (of significance) at which the observed value of the test statistic is significant.

