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Context

As we learned in the first half of the semester, statistics are functions of
random variables and therefore are random variables themselves. In
particular, they have their own distributions, called sampling distributions.
Our inferred knowledge about these distributions is used to estimater
parameters of the model which we postulate was used to generate the data.

So far we have learned about point estimators. Next, we will learn about
interval estimators. And now, we focus on hypothesis tests. In other notes,
we discuss the general view of how these fit together.

You may see in statistics courses you take that hypothesis tests are very
useful in the addressing the question whether the postulated model was
indeed used to generate the data.
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Goals of this lecture

Review of what we have learned in statistical inference
Estimation basics (statistics as simple point estimators)
Confidence intervals
Hypothesis tests
p-values

Where have we seen p-values before? [Let’s come full circle!]
Let’s see a full story example, from scratch, for a discrete distribution:
it provides a full overview, as well as a basis for some final exam
questions.
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Reminder: interpretation of confidence intervals

Figure 1: 100 confidence intervals for Ames housing

These are more informative than point estimators, yes.
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What is the weight of the evidence provided by your data?

What is the weight of the evidence provided by your
data?
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What is the weight of the evidence provided by your data?

“I’m not confortable just giving a confidence interval..”

What if we could ‘measure’ how ‘significant’ the variability observed is?
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What is the weight of the evidence provided by your data?

Enter live lecture.

Outside of these slides, we now go over the following topics:

basic elements of a statistical test
p-value. . . . wait, does this look familiar?

Revisit previous case studies from a new point of view!
relationship between confidence intervals and a hypothesis test?
how do you know if the test is one-sided or two-sided?
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What is the weight of the evidence provided by your data?

Overview of hypothesis testing
Elements of a hypothesis test

hypotheses (working(null) and research(alternative))
a test statistic (that can measure disrepancy related to the hypotheses)
a rejection region (used to create the formal decision rule)

Of course there is more. . .
Errors

(what? remember, we are never certain about anything when dealing
with data. . . we merely have probabilities, and we are trying to quantify
the uncertainty formally!)

Advanced topics:
power of a test,
‘best’ tests,
testing model goodness of fit,
my data isn’t usual! help! there’s no model!,
etc.
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Revisiting some old friends!

Revisiting some old friends!

9 / 50



Revisiting some old friends!

Recall Case study 1: automobile parts

Problem.

An important manufacturing process produces cylindrical component parts
for the automotive industry. It is important that the process produce parts
having a mean diameter of 5.0 millimeters. The engineer involved claims
that the population mean is 5.0 millimeters.

An experiment is conducted in which 100 parts produced by the process are
selected randomly and the diameter measured on each. It is known that the
population standard deviation is σ= 0.1 millimeter. The experiment
indicates a sample average diameter of X = 5.027 millimeters.

Question:
Does this sample information appear to support or refute the engineer’s
claim?
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Revisiting some old friends!

Recall Case study 1: Solution

P(|X − 5| ≥ 0.027) = 2P
(

X − 5
0.1
√
100
≥ 2.7

)
= 0.0035 = 0.007

Anything familiar?

What is this probability?
Prob of seeing the observed data or more extreme. . . ..
under some assumption about the population mean!

So 0.007 is a p-value!

H0 : µ = 5.0 vs. H1 : µ 6= 5.0
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Revisiting some old friends!

Recall Case Study 2: paint drying time

Problem Two independent experiments are run in which two different types
of paint are compared. 18 specimens are painted using type A, and the
drying time, in hours, is recorded for each. The same is done with type B.
The population standard deviations are both known to be 1.0.

Question:
Assuming that the mean drying time is equal for the two types of paint, find
P(XA − XB > 1), where XA and XB are average drying times for samples
of size nA = nB = 18.
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Revisiting some old friends!

Recall Case study 2: Solution - solution

The probability that we compute is given by:

P(XA − XB > 1) = P
(
XA − XB − 0√

1/9
≥ 1− 0√

1/9

)
= P(Z > 3) = 0.0013.

Anything familiar?

What is this probability?
Prob of seeing the observed data or more extreme. . . ..
under some assumption about two population means!

So 0.0013 is a p-value again!

H0 : µA − µB = 0 vs. H1 : µA − µB > 0.
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Revisiting some old friends!

## Case study 1: using the z-value
pnormGC(3, region="above", mean=0, sd=1,graph=TRUE)

Normal Curve, mean =  0 , SD =  1 
 Shaded Area =  0.0013

x

de
ns

ity

0.
0

0.
2

0.
4

0 3

[1] 0.001349898
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Revisiting some old friends!

## Case study 2
pnormGC(bound=c(4.973,5.027), region="outside",

mean=5, sd=0.1/sqrt(100),graph=TRUE)

Normal Curve, mean =  5 , SD =  0.01 
 Shaded Area =  0.0069

x

de
ns

ity

0
20

40

5.027

[1] 0.006933948

15 / 50



Discrete data: tests for population proportion

Discrete data: tests for population proportion
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Discrete data: tests for population proportion

Example 1: estimating a proportion

In a random sample of n = 500 families owning television sets in the city of
Hamilton, Canada, it is found that x = 340 subscribe to HBO. Find a 95%
confidence interval for the actual proportion of families with television sets
in this city that subscribe to HBO.

random variable: number of. . .
unknown population parameter: p, proportion
statistic (estimate): p̂, sample proportion
What is the sampling distribution of this statistics? What is the
setup here?

(If you know this, then you know what R function to call to compute the
confidence interval!)
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Discrete data: tests for population proportion

Here is a general (approximate) test for equal or given proportions:
prop.test(350,500)

1-sample proportions test with continuity correction

data: 350 out of 500
X-squared = 79.202, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.6574021 0.7394725

sample estimates:
p

0.7
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Discrete data: tests for population proportion

help(prop.test,package="stats")
prop.test(350,500,p=0.5,alternative="two.sided",conf.level = .98)

1-sample proportions test with continuity correction

data: 350 out of 500
X-squared = 79.202, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
98 percent confidence interval:
0.6493563 0.7462713

sample estimates:
p

0.7
# alternative can be "two.sided" or "greater" or "less"
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Discrete data: tests for population proportion

Some simple examples from R’s help file

Compare the following things:
heads <- rbinom(1, size = 100, prob = .5)
prop.test(heads, 100) # continuity correction TRUE by default

1-sample proportions test without continuity correction

data: heads out of 100
X-squared = 0, df = 1, p-value = 1
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4038315 0.5961685

sample estimates:
p

0.5
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Discrete data: tests for population proportion

Some simple examples from R’s help file

Exact test:
binom.test(heads,100) # an exact test of a binomial hypothesis!

data: heads out of 100
number of successes = 50, number of trials = 100, p-value = 1
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.3983211 0.6016789

sample estimates:
probability of success

0.5
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Discrete data: tests for population proportion

Theorems!

Goal: the sampling distribution of p̂
Assumptions: the unknown proportion p is not expected to be too
close to 0 or 1
Method:

Designating a failure in each binomial trial by the value 0 and a success
by the value 1,
the number of successes, x, can be interpreted as the sum of n values
consisting only of 0 and 1s.
Then, p̂ is just the sample mean of these n values.
Hence, by the Central Limit Theorem, for n sufficiently large, p̂ is
approximately normally distributed!

What is the z-statistic?
(... figure out the missing pieces.)
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Discrete data: tests for population proportion

Live lecture notes..

Now we discuss large-sample intervals and tests for p.

Some difficulties setting up the z-test by hand.
Hence the use of R’s built-in functions binom.test() and
prop.test().
Exact vs. approximate tests: usually we rely on approximations, as long
as we know they are fairly accurate.

I resort to exact tests when I face a scenario where the assumptions
underlying approximation results are questionable. (More on that topic
in some other statistics courses.)
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Discrete data: tests for population proportion

Example 2: hypothesis test for a proportion

A commonly prescribed drug for relieving nervous tension is believed to be
only 60% effective. Experimental results with a new drug administered to a
random sample of 100 adults who were suffering from nervous tension show
that 70 received relief.

Is this sufficient evidence to conclude that the new drug is
superior to the one commonly prescribed? (NO/YES: Use a 0.05
level of significance.)

prop.test(x=70,n=100,p=0.6,alternative="greater")

1-sample proportions test with continuity correction

data: 70 out of 100
X-squared = 3.7604, df = 1, p-value = 0.02624
alternative hypothesis: true p is greater than 0.6
95 percent confidence interval:
0.6149607 1.0000000

sample estimates:
p

0.7
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What are tests of goodness of fit?

What are tests of goodness of fit?
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What are tests of goodness of fit?

What if. . .

. . . we are looking at a relationship between two categorical variables?

mother.smokes
birthwt.below.2500 no yes

no 86 44
yes 29 30

Contingency table.

The research hypothesis can be made about a model: for example, since it
looks like there’s a positive association between low birthweight and
smoking status, maybe the data is enough evidence to refute H0: weight
and smoking are independent!

26 / 50



What are tests of goodness of fit?

Testing model fit?
To test for significance, we just need to pass our 2× 2 table into the
appropriate function. Here’s the result of using Fisher’s exact test by calling
fisher.test
birthwt.fisher.test <- fisher.test(weight.smoke.tbl)
birthwt.fisher.test

Fisher's Exact Test for Count Data

data: weight.smoke.tbl
p-value = 0.03618
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.028780 3.964904

sample estimates:
odds ratio
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What are tests of goodness of fit?

Testing model fit another way

You can also use the chi-squared test via the chisq.test function.
chisq.test(weight.smoke.tbl)

Pearson's Chi-squared test with Yates' continuity correction

data: weight.smoke.tbl
X-squared = 4.2359, df = 1, p-value = 0.03958

You get essentially the same answer by running the chi-squared
test, but the output isn’t as useful. In particular, you’re not
getting an estimate or confidence interval for the odds ratio. This
is why I prefer fisher.test() for testing 2 x 2 tables.
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What are tests of goodness of fit?

Tests for j × k tables
Here’s a small data set on party affiliation broken down by gender.
# Manually enter the data
politics <- as.table(rbind(c(762, 327, 468),

c(484, 239, 477)))
dimnames(politics) <- list(

gender = c("F", "M"),
party = c("Democrat","Independent", "Republican"))

politics # display the data

party
gender Democrat Independent Republican

F 762 327 468
M 484 239 477

We may be interested in asking whether men and women have different
party affiliations. 29 / 50



What are tests of goodness of fit?

The answer will be easier to guess at if we convert the rows to show
proportions instead of counts. Here’s one way of doing this.
politics.prop <- prop.table(politics, 1)
politics.prop

party
gender Democrat Independent Republican

F 0.4894027 0.2100193 0.3005780
M 0.4033333 0.1991667 0.3975000

By looking at the table we see that Female are more likely to be Democrats
and less likely to be Republicans.
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What are tests of goodness of fit?

We still want to know if this difference is significant. To assess this we can
use the chi-squared test (on the counts table, not the proportions table!).
chisq.test(politics)

Pearson's Chi-squared test

data: politics
X-squared = 30.07, df = 2, p-value = 2.954e-07

There isn’t really a good one-number summary for general j x k tables the
way there is for 2 x 2 tables. One may collapse or use other strategies.
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End of course module

End of course module
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End of course module

Summary of hypothesis testing

Three elements of a test: hypotheses, test statistic, and rejection
region/decision rule
In practice, check assumptions to know which test to use (i.e., which
distribution to reference)

We learned about: one- and two-population location and scale
problems, in continuious setting, and proportion in discrete setting.
Hypothesis tests can be made for the general setup: “Is the model
correct? does it fit my data?” which is a question you should ask
before using the model for analytics.

Sometimes model fit tests are done heuristically;
Sometimes we have formal testing procedures.
So far we’ve only seen a simple two-way table example of this. More to
come within regression.

33 / 50



End of course module

Summary of hypothesis testing

Three elements of a test: hypotheses, test statistic, and rejection
region/decision rule
In practice, check assumptions to know which test to use (i.e., which
distribution to reference)
We learned about: one- and two-population location and scale
problems, in continuious setting, and proportion in discrete setting.

Hypothesis tests can be made for the general setup: “Is the model
correct? does it fit my data?” which is a question you should ask
before using the model for analytics.

Sometimes model fit tests are done heuristically;
Sometimes we have formal testing procedures.
So far we’ve only seen a simple two-way table example of this. More to
come within regression.

33 / 50



End of course module

Summary of hypothesis testing

Three elements of a test: hypotheses, test statistic, and rejection
region/decision rule
In practice, check assumptions to know which test to use (i.e., which
distribution to reference)
We learned about: one- and two-population location and scale
problems, in continuious setting, and proportion in discrete setting.
Hypothesis tests can be made for the general setup: “Is the model
correct? does it fit my data?” which is a question you should ask
before using the model for analytics.

Sometimes model fit tests are done heuristically;
Sometimes we have formal testing procedures.
So far we’ve only seen a simple two-way table example of this. More to
come within regression.

33 / 50



End of course module

Pro-tips

Let’s take a look at a simulated example, for those who want to understand
the testing setup a bit more.
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End of course module

What is statistical significance testing doing?

Here’s a little simulation where we have two groups, a treatment groups and
a control group. We’re going to simulate observations from both groups.
We’ll run the simulation two ways.

First simulation (Null case): the treatment has no effect
Second simulation (Non-null case): the treatment on average increases
outcome

set.seed(12345)
# Function to generate data
generateSimulationData <- function(n1, n2, mean.shift = 0) {

y <- rnorm(n1 + n2) + c(rep(0, n1), rep(mean.shift, n2))
groups <- c(rep("control", n1), rep("treatment", n2))
data.frame(y = y, groups = groups)

}

35 / 50



End of course module

Let’s look at a single realization in the null setting.
n1 = 30
n2 = 40
# Observation, null case
obs.data <- generateSimulationData(n1 = n1, n2 = n2)
# y groups
# 1 0.58552882 control
# 2 0.70946602 control
# 3 -0.10930331 control
# 4 -0.45349717 control
# 5 0.60588746 control
# 6 -1.81795597 control
# ...
# 29 0.61212349 control
# 30 -0.16231098 control
# 31 0.81187318 treatment
# 32 2.19683355 treatment
# 33 2.04919034 treatment
# 34 1.63244564 treatment
# 35 0.25427119 treatment
# ...
# 66 -1.83237731 treatment
# 67 0.88813943 treatment
# 68 1.59348847 treatment
# 69 0.51685467 treatment
# 70 -1.29567168 treatment
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End of course module

# Box plots
qplot(x = groups, y = y, data = obs.data, geom = "boxplot")

−2

−1

0

1

2

control treatment
groups

y
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End of course module

# Density plots
qplot(fill = groups, x = y, data = obs.data, geom = "density",

alpha = I(0.5),
adjust = 1.5,
xlim = c(-4, 6))
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End of course module

# t-test
t.test(y ~ groups, data = obs.data)

Welch Two Sample t-test

data: y by groups
t = -0.61095, df = 67.998, p-value = 0.5433
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.6856053 0.3641889

sample estimates:
mean in group control mean in group treatment

0.07880701 0.23951518
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End of course module

And here’s what happens in a random realization in the non-null setting.
# Non-null case, very strong treatment effect
# Observation, null case
obs.data <- generateSimulationData(

n1 = n1, n2 = n2, mean.shift = 1.5)

# Box plots
qplot(x = groups, y = y, data = obs.data, geom = "boxplot")
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End of course module

# Density plots
qplot(fill = groups, x = y, data = obs.data, geom = "density",

alpha = I(0.5),
adjust = 1.5,
xlim = c(-4, 6))
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End of course module

# t-test
t.test(y ~ groups, data = obs.data)

Welch Two Sample t-test

data: y by groups
t = -4.3081, df = 64.785, p-value = 5.708e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.6911828 -0.6197985

sample estimates:
mean in group control mean in group treatment

0.4191634 1.5746541
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End of course module

Another way to visualize the difference

On the following few slides, we will see a few plots of p-values
that illustrate what’s going on behind the scenes. However, code
for creating those plots is a bit beyond our course; if you are
curious you can view the full original source.

More interestingly, let’s see what happens if we repeat our simulation 10000
times and look at the p-values. We’ll use a moderate effect of 0.5 instead of
the really strong effect of 1.5 in this simulation.
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End of course module

Here are p-values under 0 treatment effect

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (geom_bar).
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P−value when treatment has 0 effect
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End of course module

Here are p-values under moderate treatment effect:

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (geom_bar).
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45 / 50



End of course module

Let’s show both histograms on the same plot.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 4 rows containing missing values (geom_bar).
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End of course module

What if sample is small and data are non-Gaussian?

We approach t-test with caution.
If your data is highly skewed, you would need a very large sample size for
the t-statistic to actually be t-distributed.

When it doubt, you can run a non-parametric test.
This course doesn’t cover this topic.
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End of course module

Is the data normal?

I would recommend using a non-parametric test when the data appears
highly non-normal and the sample size is small. If you really want to stick
to t-testing, it’s good to know how to diagnose non-normality.

Remember!
The simplest thing to look at is a normal qq plot of the data. This is
obtained using the stat_qq() function.

We have done this in a previous lecture, about 2-3 weeks ago.
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech.

The simulated example part of this lecture and the contingency table
example part of this lecture were sourced from Prof. Alexandra
Chouldechova, released under a Attribution-NonCommercial-ShareAlike 3.0
United States license.

While the course materials are generally not to be distributed outside the
course without permission of the instructor, all materials posted on this
page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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