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Goals of this lecture

Setting the context: data mining
A few illustrations on applications of statistical learning
Stat.Learn.:

what is it?
how is it done?

Resources and links
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Setting the context: data mining

Section 1

Setting the context: data mining
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Setting the context: data mining

What is data mining?

Data mining is the science of discovering structure and making predictions
in large or complex data sets.
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Setting the context: data mining

Spam filtering, Fraud detection, Event detection
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Setting the context: data mining

Spam filtering, Fraud detection, Outbreak detection

How can we tell apart spam from real emails?
How do we identify fraudulent transactions?
Is the president’s tweet going viral?

Is the flu going viral?
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Setting the context: data mining

Recommendation systems

Which movies should I recommend to my customers?
How can I identify individuals with similar viewing/purchasing
preferences?
Which products should I recommend to my customers?
Which promotional offers should I send out, and to whom?
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Setting the context: data mining

Precision medicine, health analytics

. . . And many more applications (content tagging in images; text mining;

. . . )
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Setting the context: data mining

Thinking about Data Mining problems

Data mining problems are often divided into predictive tasks and descriptive
tasks.

Predictive Analytics (Supervised learning):
Q: To whom should I extend credit?

Task: Predict how likely an applicant is to repay loan.
Q: What characterizes customers who are likely to churn?

Task: Identify variables that are predictive of churn.
Q: How profitable will this subscription customer be?

Task: Predict how long customer will remain subscribed.

Descriptive Analytics (Unsupervised learning):
Clustering customers into groups with similar spending habits
Learning association rules: E.g., 50% of clients who {recently got
promoted, had a baby} want to {get a mortgage}

9 / 30



Setting the context: data mining

Thinking about Data Mining problems

Data mining problems are often divided into predictive tasks and descriptive
tasks.

Predictive Analytics (Supervised learning):
Q: To whom should I extend credit?

Task: Predict how likely an applicant is to repay loan.
Q: What characterizes customers who are likely to churn?

Task: Identify variables that are predictive of churn.
Q: How profitable will this subscription customer be?

Task: Predict how long customer will remain subscribed.

Descriptive Analytics (Unsupervised learning):
Clustering customers into groups with similar spending habits
Learning association rules: E.g., 50% of clients who {recently got
promoted, had a baby} want to {get a mortgage}

9 / 30



Setting the context: data mining

Thinking about Data Mining problems

Data mining problems are often divided into predictive tasks and descriptive
tasks.

Predictive Analytics (Supervised learning):
Q: To whom should I extend credit?

Task: Predict how likely an applicant is to repay loan.
Q: What characterizes customers who are likely to churn?

Task: Identify variables that are predictive of churn.
Q: How profitable will this subscription customer be?

Task: Predict how long customer will remain subscribed.

Descriptive Analytics (Unsupervised learning):
Clustering customers into groups with similar spending habits
Learning association rules: E.g., 50% of clients who {recently got
promoted, had a baby} want to {get a mortgage}

9 / 30



Setting the context: data mining

Thinking about Data Mining problems

Data mining problems are often divided into predictive tasks and descriptive
tasks.

Predictive Analytics (Supervised learning):
Q: To whom should I extend credit?

Task: Predict how likely an applicant is to repay loan.
Q: What characterizes customers who are likely to churn?

Task: Identify variables that are predictive of churn.
Q: How profitable will this subscription customer be?

Task: Predict how long customer will remain subscribed.

Descriptive Analytics (Unsupervised learning):
Clustering customers into groups with similar spending habits
Learning association rules: E.g., 50% of clients who {recently got
promoted, had a baby} want to {get a mortgage}

9 / 30



Setting the context: data mining

Thinking about Data Mining problems

Data mining problems are often divided into predictive tasks and descriptive
tasks.

Predictive Analytics (Supervised learning):
Q: To whom should I extend credit?

Task: Predict how likely an applicant is to repay loan.
Q: What characterizes customers who are likely to churn?

Task: Identify variables that are predictive of churn.
Q: How profitable will this subscription customer be?

Task: Predict how long customer will remain subscribed.

Descriptive Analytics (Unsupervised learning):
Clustering customers into groups with similar spending habits
Learning association rules: E.g., 50% of clients who {recently got
promoted, had a baby} want to {get a mortgage}

9 / 30



A few illustrations on applications of statistical learning

Section 2

A few illustrations on applications of statistical
learning
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A few illustrations on applications of statistical learning

Wage data
2 1. Introduction
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FIGURE 1.1. Wage data, which contains income survey information for males
from the central Atlantic region of the United States. Left: wage as a function of
age. On average, wage increases with age until about 60 years of age, at which
point it begins to decline. Center: wage as a function of year. There is a slow
but steady increase of approximately $10,000 in the average wage between 2003
and 2009. Right: Boxplots displaying wage as a function of education, with 1
indicating the lowest level (no high school diploma) and 5 the highest level (an
advanced graduate degree). On average, wage increases with the level of education.

Given an employee’s age, we can use this curve to predict his wage. However,
it is also clear from Figure 1.1 that there is a significant amount of vari-
ability associated with this average value, and so age alone is unlikely to
provide an accurate prediction of a particular man’s wage.
We also have information regarding each employee’s education level and

the year in which the wage was earned. The center and right-hand panels of
Figure 1.1, which display wage as a function of both year and education, in-
dicate that both of these factors are associated with wage. Wages increase
by approximately $10,000, in a roughly linear (or straight-line) fashion,
between 2003 and 2009, though this rise is very slight relative to the vari-
ability in the data. Wages are also typically greater for individuals with
higher education levels: men with the lowest education level (1) tend to
have substantially lower wages than those with the highest education level
(5). Clearly, the most accurate prediction of a given man’s wage will be
obtained by combining his age, his education, and the year. In Chapter 3,
we discuss linear regression, which can be used to predict wage from this
data set. Ideally, we should predict wage in a way that accounts for the
non-linear relationship between wage and age. In Chapter 7, we discuss a
class of approaches for addressing this problem.

Stock Market Data

The Wage data involves predicting a continuous or quantitative output value.
This is often referred to as a regression problem. However, in certain cases
we may instead wish to predict a non-numerical value—that is, a categorical

Figure 1: ISLR figure: Wage data, which contains income survey information for males from the central Atlantic region of
the United States. Left: wage as a function of age. On average, wage increases with age until about 60 years of age, at which
point it begins to decline. Center: wage as a function of year. There is a slow but steady increase of approximately $10,000 in
the average wage between 2003 and 2009. Right: Boxplots displaying wage as a function of education, with 1 indicating the
lowest level (no high school diploma) and 5 the highest level (an advanced graduate degree). On average, wage increases with
the level of education.
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A few illustrations on applications of statistical learning

Stock Market data
1. Introduction 3
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FIGURE 1.2. Left: Boxplots of the previous day’s percentage change in the S&P
index for the days for which the market increased or decreased, obtained from the
Smarket data. Center and Right: Same as left panel, but the percentage changes
for 2 and 3 days previous are shown.

or qualitative output. For example, in Chapter 4 we examine a stock mar-
ket data set that contains the daily movements in the Standard & Poor’s
500 (S&P) stock index over a 5-year period between 2001 and 2005. We
refer to this as the Smarket data. The goal is to predict whether the index
will increase or decrease on a given day using the past 5 days’ percentage
changes in the index. Here the statistical learning problem does not in-
volve predicting a numerical value. Instead it involves predicting whether
a given day’s stock market performance will fall into the Up bucket or the
Down bucket. This is known as a classification problem. A model that could
accurately predict the direction in which the market will move would be
very useful!
The left-hand panel of Figure 1.2 displays two boxplots of the previous

day’s percentage changes in the stock index: one for the 648 days for which
the market increased on the subsequent day, and one for the 602 days for
which the market decreased. The two plots look almost identical, suggest-
ing that there is no simple strategy for using yesterday’s movement in the
S&P to predict today’s returns. The remaining panels, which display box-
plots for the percentage changes 2 and 3 days previous to today, similarly
indicate little association between past and present returns. Of course, this
lack of pattern is to be expected: in the presence of strong correlations be-
tween successive days’ returns, one could adopt a simple trading strategy
to generate profits from the market. Nevertheless, in Chapter 4, we explore
these data using several different statistical learning methods. Interestingly,
there are hints of some weak trends in the data that suggest that, at least
for this 5-year period, it is possible to correctly predict the direction of
movement in the market approximately 60% of the time (Figure 1.3).

Figure 2: ISLR figure: Left: Boxplots of the previous day’s percentage change in the S&P index for the days for which the
market increased or decreased, obtained from the Smarket data. Center and Right: Same as left panel, but the percentage
changes for 2 and 3 days previous are shown.
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A few illustrations on applications of statistical learning

Stock Market data
4 1. Introduction
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FIGURE 1.3. We fit a quadratic discriminant analysis model to the subset
of the Smarket data corresponding to the 2001–2004 time period, and predicted
the probability of a stock market decrease using the 2005 data. On average, the
predicted probability of decrease is higher for the days in which the market does
decrease. Based on these results, we are able to correctly predict the direction of
movement in the market 60% of the time.

Gene Expression Data

The previous two applications illustrate data sets with both input and
output variables. However, another important class of problems involves
situations in which we only observe input variables, with no corresponding
output. For example, in a marketing setting, we might have demographic
information for a number of current or potential customers. We may wish to
understand which types of customers are similar to each other by grouping
individuals according to their observed characteristics. This is known as a
clustering problem. Unlike in the previous examples, here we are not trying
to predict an output variable.
We devote Chapter 10 to a discussion of statistical learning methods

for problems in which no natural output variable is available. We consider
the NCI60 data set, which consists of 6,830 gene expression measurements
for each of 64 cancer cell lines. Instead of predicting a particular output
variable, we are interested in determining whether there are groups, or
clusters, among the cell lines based on their gene expression measurements.
This is a difficult question to address, in part because there are thousands
of gene expression measurements per cell line, making it hard to visualize
the data.
The left-hand panel of Figure 1.4 addresses this problem by represent-

ing each of the 64 cell lines using just two numbers, Z1 and Z2. These
are the first two principal components of the data, which summarize the
6, 830 expression measurements for each cell line down to two numbers or
dimensions. While it is likely that this dimension reduction has resulted in

Figure 3: ISLR figure: We fit a quadratic discriminant analysis model to the subset of the Smarket data corresponding to
the 2001–2004 time period, and predicted the probability of a stock market decrease using the 2005 data. On average, the
predicted probability of decrease is higher for the days in which the market does decrease. Based on these results, we are able to
correctly predict the direction of movement in the market 60% of the time.
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A few illustrations on applications of statistical learning

Gene Expression Data
1. Introduction 5
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FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in
a two-dimensional space, Z1 and Z2. Each point corresponds to one of the 64
cell lines. There appear to be four groups of cell lines, which we have represented
using different colors. Right: Same as left panel except that we have represented
each of the 14 different types of cancer using a different colored symbol. Cell lines
corresponding to the same cancer type tend to be nearby in the two-dimensional
space.

some loss of information, it is now possible to visually examine the data for
evidence of clustering. Deciding on the number of clusters is often a diffi-
cult problem. But the left-hand panel of Figure 1.4 suggests at least four
groups of cell lines, which we have represented using separate colors. We
can now examine the cell lines within each cluster for similarities in their
types of cancer, in order to better understand the relationship between
gene expression levels and cancer.
In this particular data set, it turns out that the cell lines correspond

to 14 different types of cancer. (However, this information was not used
to create the left-hand panel of Figure 1.4.) The right-hand panel of Fig-
ure 1.4 is identical to the left-hand panel, except that the 14 cancer types
are shown using distinct colored symbols. There is clear evidence that cell
lines with the same cancer type tend to be located near each other in this
two-dimensional representation. In addition, even though the cancer infor-
mation was not used to produce the left-hand panel, the clustering obtained
does bear some resemblance to some of the actual cancer types observed
in the right-hand panel. This provides some independent verification of the
accuracy of our clustering analysis.

A Brief History of Statistical Learning

Though the term statistical learning is fairly new, many of the concepts
that underlie the field were developed long ago. At the beginning of the
nineteenth century, Legendre and Gauss published papers on the method

Figure 4: ISLR figure: Left: Representation of the NCI60 gene expression data set in a two-dimensional space, Z1 and Z2.
Each point corresponds to one of the 64 cell lines. There appear to be four groups of cell lines, which we have represented using
different colors. Right: Same as left panel except that we have represented each of the 14 different types of cancer using a
different colored symbol. Cell lines corresponding to the same cancer type tend to be nearby in the two-dimensional space.
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What is statistical learning?

Section 3

What is statistical learning?
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What is statistical learning?

Uncovering relationships
16 2. Statistical Learning
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ε. (2.1)

Here f is some fixed but unknown function ofX1, . . . , Xp, and ε is a random
error term, which is independent of X and has mean zero. In this formula-

error term
tion, f represents the systematic information that X provides about Y .

systematic
As another example, consider the left-hand panel of Figure 2.2, a plot of

income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of

education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ε. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.
In general, the function f may involve more than one input variable.

In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

Figure 5: ISLRfig2.1: The Advertising data set. The plot displays sales, in thousands of units, as a function of TV,
radio, and newspaper budgets, in thousands of dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable. . . In other words, each blue line represents a simple model that can be used to predict sales using
TV, radio, and newspaper, respectively.
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What is statistical learning?

Estimating f

More generally, suppose that we observe a quantitative response Y and
p different predictors, X1,X2, . . . ,Xp.

We assume that there is some relationship between Y and
X = (X1,X2, ...,Xp), which can be written in the very general form

Y = f (X ) + ε.

f is some fixed but unknown function of X1,X2, . . . ,Xp.

ε is a random error term, which is independent of X and has mean zero.

In this formulation, f represents the *systematic* information that X
provides about Y .
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What is statistical learning?

Another example
2.1 What Is Statistical Learning? 17
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f , as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?

There are two main reasons that we may wish to estimate f : prediction
and inference. We discuss each in turn.

Prediction

In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Ŷ = f̂(X), (2.2)

where f̂ represents our estimate for f , and Ŷ represents the resulting pre-
diction for Y . In this setting, f̂ is often treated as a black box, in the sense
that one is not typically concerned with the exact form of f̂ , provided that
it yields accurate predictions for Y .

Figure 6: ISLRfig2.2: The Income data set. Left: The red dots are the observed values of income (in tens of thousands of
dollars) and years of education for 30 indi- viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in this case because the data were simulated). The
black lines represent the error associated with each observation. Note that some errors are positive (if an ob- servation lies
above the blue curve) and some are negative (if an observation lies below the curve). Overall, these errors have approximately
mean zero.
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What is statistical learning?

Summary: essence of statistical learning

Takeaway
Statistical learning refers to a set of approaches for estimating f .

Let’s outline some of the key theoretical concepts that arise in
estimating f ,
as well as tools for evaluating the estimates obtained.
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What is statistical learning?

Why estimate f ?
Two reasons: prediction and inference.

Prediction
A set of inputs X are readily available,
but the output Y cannot be easily obtained.
Since the error term averages to zero, we can predict Y using

Ŷ = f̂ (X ),

where f̂ represents our estimate for f , and Ŷ represents the resulting
prediction for Y .

f̂ = a black box.

Example
X1,X2, . . . ,Xp are characteristics of a patient’s blood sample that can
be easily measured in a lab,
Y is a variable encoding the patient’s risk for a severe adverse reaction
to a particular drug.

It is natural to seek to predict Y using X : we can then avoid giving the
drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
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What is statistical learning?

Why estimate f ?
Two reasons: prediction and inference.

Inference
We are often interested in understanding the way that Y is affected as
X1,X2, . . . ,Xp change.
Estimate f ; not necessarily to make predicitons for Y , but understand
the relationship between X and Y :

how Y changes as a function of X1,X2, . . . ,Xp.
f̂ can’t be a black box.
Questions:

Which predictors are associated with the response?
What is the relationship between the response and each predictor?
an the relationship between Y and each predictor be adequately
summarized using a linear equation, or is the relationship more
complicated?

Example - Advertising data set
Which media contribute to sales?
Which media generate the biggest boost in sales? or
How much increase in sales is associated with a given increase in TV
advertising?
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What is statistical learning?

How Do We Estimate f ?

2.1 What Is Statistical Learning? 17
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approximately mean zero.

In essence, statistical learning refers to a set of approaches for estimating
f . In this chapter we outline some of the key theoretical concepts that arise
in estimating f , as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?

There are two main reasons that we may wish to estimate f : prediction
and inference. We discuss each in turn.

Prediction

In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Ŷ = f̂(X), (2.2)

where f̂ represents our estimate for f , and Ŷ represents the resulting pre-
diction for Y . In this setting, f̂ is often treated as a black box, in the sense
that one is not typically concerned with the exact form of f̂ , provided that
it yields accurate predictions for Y .

Figure 7: Recall this example

Observed n = 30 data points.
These observations are called the training data because we will use
these observations to train, or teach, our method how to estimate f .
we apply a statistical learning method to the training data in order to
estimate the unknown function f .
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What is statistical learning?

“We apply a statistical learning method to the training data in order to
estimate the unknown function f :”

Find a function f̂ such that Y ≈ f̂ (X ) for any observation (X ,Y ).

1 Parametric methods

Select model (make an assumption about the functional form, or shape,
of f ; e.g., linear, say)
Train/fit the model (e.g. ordinary least squares, say).

2 Non-parametric methods:

do not make explicit assumptions about the functional form of f .
Seek an estimate of f that gets as close to the data points as possible
without being too rough or wiggly.
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Parametric vs. nonparametric:

Non-parametric advantage:
by avoiding the assumption of a particular functional form for f, they
have the potential to accurately fit a wider range of possible shapes for f.
Any parametric approach brings with it the possibility that the
functional form used to estimate f is very different from the true f, in
which case the resulting model will not fit the data well.
In contrast, non-parametric approaches completely avoid this danger,
since essentially no assumption about the form of f is made.

Non-parametric disadvantage:
since they do not reduce the problem of estimating f to a small number
of parameters, a very large number of observations (far more than is
typically needed for a parametric approach) is required in order to obtain
an accurate estimate for f .
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X , since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
The accuracy of Ŷ as a prediction for Y depends on two quantities,

which we will call the reducible error and the irreducible error. In general,
reducible
error

irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X . Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.
Why is the irreducible error larger than zero? The quantity ε may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

Figure 8: ISLRfig2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true
underlying relationship between income and years of education and seniority, which
is known since the data are simulated. The red dots indicate the observed values of
these quantities for 30 individuals.
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FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0,β1, . . . ,βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms

flexible
for f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they

overfitting
follow the errors, or noise, too closely. These issues are discussed through-

noise
out this book.
Figure 2.4 shows an example of the parametric approach applied to the

Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the

Figure 9: A linear model fit by least squares to the Income data from Figure prev
page. The observations are shown in red, and the yellow plane indicates the least
squares fit to the data.
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .
An example of a non-parametric approach to fitting the Income data is

shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap-
thin-plate
splineproach does not impose any pre-specified model on f . It instead attempts

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being

Figure 10: ISLRfig2.5. A smooth thin-plate spline fit to the Income data is shown
in yellow; the observations are displayed in red.
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.
As we have seen, there are advantages and disadvantages to parametric

and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.

Figure 11: ISLRfig2.6. A rough thin-plate spline fit to the Income data. This fit
makes zero errors on the training data.
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Conclusion and where to next

What does it mean to be a good predictor?
stay tuned; here’s a quick example.
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Content of this lecture is based on the first two chapters of the textbook
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’. The book is
available online.

Part of this lecture notes are extracted from Prof. Alexandra Chouldechova
data mining notes CMU-95791, released under a
Attribution-NonCommercial-ShareAlike 3.0 United States license.

Code for generating the stat plots will be released on the course site.
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