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Goals of this lecture

Setting the context: estimating f
Accuracy-interpretability trade off

[looking forward to the bias-variance trade off]
Supervised vs. unsupervised learning
Regression vs. classification
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Section 1

Setting the context: estimating f , accuracy &
interpretability
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Review: estimating f [regression setting]

Observe: a quantitative response Y , p different predictors,
X1,X2, . . . ,Xp.

Assume: some relationship between Y and X = (X1,X2, ...,Xp), which
can be written in the very general form

Y = f (X ) + ε.

f is some fixed but unknown function of X1,X2, . . . ,Xp
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X , since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
The accuracy of Ŷ as a prediction for Y depends on two quantities,

which we will call the reducible error and the irreducible error. In general,
reducible
error

irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X . Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.
Why is the irreducible error larger than zero? The quantity ε may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

ε is a random error term, which is independent of X and has mean zero.

In this formulation, f represents the *systematic* information that X
provides about Y .
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f , Y = f (X ) + ε, f̂ , Ŷ = f̂ (X ) [regression setting]
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FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0,β1, . . . ,βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms

flexible
for f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they

overfitting
follow the errors, or noise, too closely. These issues are discussed through-

noise
out this book.
Figure 2.4 shows an example of the parametric approach applied to the

Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .
An example of a non-parametric approach to fitting the Income data is

shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap-
thin-plate
splineproach does not impose any pre-specified model on f . It instead attempts

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.
As we have seen, there are advantages and disadvantages to parametric

and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.
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Accuracy vs. interpretability
Less flexible methods = more restrictive, relatively small range of
shapes for f̂ .

E.g.: linear regression

More flexible methods = can generate a wider range of possible
shapes to estimate f .

Why ever choose more restrictive?!
Inference: restrictive ↔ interpretable

E.g. Linear model: easy to understand the relationship between Y anad
X1, . . . ,Xp.
Flexible approach can lead to such complicated estimates of f that it is
difficult to understand how any individual predictor is associated with
the response.

Prediction: the interpretability of the predictive model is simply not of
interest

Expect? - best to use most flexible model
Surprise: often more accurate prediction using a less flexible method
(looking ahead: the overfitting phenomenon).
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Generalizability: a central theme

Construct predictors that generalize well to unseen data

Capture useful trends in the data (don’t underfit)
Ignore meaningless random fluctuations in the data (don’t overfit)

Central theme 1: Generalizability
• We want to construct predictors that generalize well to unseen data
• i.e., we want predictors that:

1 Capture useful trends in the data (don’t underfit)
2 Ignore meaningless random fluctuations in the data (don’t overfit)

• We also want to avoid unjustifiably extrapolating beyond the scope of
our data

24 / 62

Figure 1: meaning of overfitting and underfitting
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Avoid unjustifiably extrapolating beyond the scope of the data

Central theme 1: Generalizability
• We want to construct predictors that generalize well to unseen data
• i.e., we want predictors that:

1 Capture useful trends in the data (don’t underfit)
2 Ignore meaningless random fluctuations in the data (don’t overfit)

• We also want to avoid unjustifiably extrapolating beyond the scope of
our data

Randall Munroe, xkcd

24 / 62
Figure 2: meaningless extrapolation
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Reminder: supervised vs unsupervised learning

Predictive Analytics (Supervised learning):
Q: To whom should I extend credit?

Task: Predict how likely an applicant is to repay loan.
Q: What characterizes customers who are likely to churn?

Task: Identify variables that are predictive of churn.
Q: How profitable will this subscription customer be?

Task: Predict how long customer will remain subscribed.
Descriptive Analytics (Unsupervised learning):

Clustering customers into groups with similar spending habits
Learning association rules: E.g., 50% of clients who {recently got
promoted, had a baby} want to {get a mortgage}
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Supervised vs. unsupervised – from f ’s point of view:

Supervised learning
For each observation of the predictor measurement(s) x1, . . . , xn,
there is an associated response measurement yi .

Unsupervised learning
for every observation i = 1, . . . , n, we observe a vector of measurements xi
but no associated response yi .
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Regression vs. classification

Types of random variables:
quantitative (continuous) or qualitative (categorical, discrete).

We select learning methods based on type of response (predictor type less
important)!

Quantitative response 7→ regression problems
Qualitative response 7→ classification problems

. . . but the lines do blur, so beware:
Least squares linear regression is used with a quantitative response,
Logistic regression is typically used with a qualitative (two-class, or
binary) response. As such it is often used as a classification method.
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→ Up next: ←

Assessing model accuracy
(from the point of view of both classification and regression)

[NEXT LECTURE]
Training & testing data sets

Partitioning
Balancing
Cross-validation, etc.

[NEXT LECTURE; but in preparation for that: HANDS-ON LAB NOW]

Aha!
It is time for AhaSlides review! https://www.ahaslides.com/STATITMW11
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Lab time!

→ Hands-on: group breakout work ←
See worksheets handouts posted on Campuswire:

Partitioning the data
Validating the partition
Balancing
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Content of this lecture is based on the first two chapters of the textbook
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’. The book is
available online.

Part of this lecture notes are extracted from Prof. Alexandra Chouldechova
data mining notes CMU-95791, released under a
Attribution-NonCommercial-ShareAlike 3.0 United States license.
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