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Goals of this lecture

Assessing model accuracy
Measuring quality of fit

from the point of view of classification
from the point of view of regression

Intro to validation set approaches (data partitioning and
cross-validation)

→ This will be used for establishing baseline model performance
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Setting the context: estimating f , accuracy & interpretability

Section 1

Setting the context: estimating f , accuracy &
interpretability
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Review: estimating f

Observe: a quantitative response Y , p different predictors,
X1,X2, . . . ,Xp.

Assume: some relationship between Y and X = (X1,X2, ...,Xp), which
can be written in the very general form

Y = f (X ) + ε.

f is some fixed but unknown function of X1,X2, . . . ,Xp
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X , since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
The accuracy of Ŷ as a prediction for Y depends on two quantities,

which we will call the reducible error and the irreducible error. In general,
reducible
error

irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X . Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.
Why is the irreducible error larger than zero? The quantity ε may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

ε is a random error term, which is independent of X and has mean zero.

In this formulation, f represents the *systematic* information that X
provides about Y .
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[Regression setting]1 f , Y = f (X ) + ε, f̂ , Ŷ = f̂ (X )
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would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X . Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.
Why is the irreducible error larger than zero? The quantity ε may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

22 2. Statistical Learning

Years of Education

Sen
ior

ity

Incom
e

FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0,β1, . . . ,βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms

flexible
for f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they

overfitting
follow the errors, or noise, too closely. These issues are discussed through-

noise
out this book.
Figure 2.4 shows an example of the parametric approach applied to the

Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .
An example of a non-parametric approach to fitting the Income data is

shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap-
thin-plate
splineproach does not impose any pre-specified model on f . It instead attempts

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.
As we have seen, there are advantages and disadvantages to parametric

and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.

1ISLR book figures.
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[Classification setting]2

Figure 1: A clustering data set involving three groups. Each group is shown using a
different colored symbol. Left: The three groups are well-separated. In this setting,
a clustering approach should successfully identify the three groups. Right: There is
some overlap among the groups. Now the clustering task is more challenging.

2ISLR fig2.8.
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Assessing model accuracy

There is no free lunch in statistics!
No one method dominates all others over all possible data sets.

Important task: decide, for any given set of data, which method
produces the best results.

Selecting the best approach can be one of the most challenging parts of
performing statistical learning in practice.

Need: measure how well predictions match observed data.
→ quantify the extent to which the predicted response value for a given
observation is close to the true response value for that observation.
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Measuring quality of fit - regression setting
Mean squared error (MSE)

MSE = 1
n

n∑
i=1

(yi − f̂ (xi))2

f̂ (xi) is the prediction that f gives for the ith observation.

Most commonly-used measure
Interpretation? [measuring closeness f̂ (xi ) ≈ yi ?]

*Better name: training MSE! [why?]

But... we don’t really care about *training MSE*!
Real question:
What is the accuracy of the predictions that we obtain when we apply our
method to previously unseen test data?

→ Test data!
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Training vs. test data

Example 1
Goal: Develop an algorithm to predict a stock’s price based on previous
stock returns.

We can train the method using stock returns from the past 6 months.
But we don’t really care how well our method predicts last week’s
stock price.
We instead care about how well it will predict tomorrow’s price or
next month’s price.
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Example 2
Goal: predict diabetes risk for future patients based on their clinical
measurements.

Clinical measurements (e.g. weight, blood pressure, height, age, family
history of disease) for a number of patients, + info whether each
patient has diabetes.
Train a statistical learning method to predict risk of diabetes based
on clinical measurements.
No interest: whether method accurately predicts diabetes risk for
patients used to train the model, since we already know which of those
patients have diabetes.
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The test MSE

(x0, y0) a previously unseen test observation
Goal: f̂ (x0) ≈ y0?

Test MSE

Ave(y0 − f̂ (x0))2

average squared prediction error for test observations (x0, y0).

Discuss meaning!
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Minimizing (test) MSE

How to select a method that does this??
Scenario: test data available

Set of observations not used to train the statistical model.
Evaluate test MSE, Ave(y0 − f̂ (x0))2 on that set.

Scenario: no test observations available
Maybe. . . . select a model/method that minimizes training MSE,
1
n

∑n
i=1(yi − f̂ (xi))2.
→ fundamental problem with this strategy!

→ let’s look at an example [ISLR fig2.9.]:
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Figure 2: Left: Data simulated from f , shown in black. Three estimates of f are
shown: the linear regression line (orange curve), and two smoothing spline fits
(blue and green curves). Right: Training MSE (grey curve), test MSE (red curve),
and minimum possible test MSE over all methods (dashed line). Squares represent
the training and test MSEs for the three fits shown in the left-hand panel.
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.

Figure 2.10 provides another example in which the true f is approxi-
mately linear. Again we observe that the training MSE decreases mono-
tonically as the model flexibility increases, and that there is a U-shape in
the test MSE. However, because the truth is close to linear, the test MSE
only decreases slightly before increasing again, so that the orange least
squares fit is substantially better than the highly flexible green curve. Fi-
nally, Figure 2.11 displays an example in which f is highly non-linear. The
training and test MSE curves still exhibit the same general patterns, but
now there is a rapid decrease in both curves before the test MSE starts to
increase slowly.
In practice, one can usually compute the training MSE with relative

ease, but estimating test MSE is considerably more difficult because usually
no test data are available. As the previous three examples illustrate, the
flexibility level corresponding to the model with the minimal test MSE can
vary considerably among data sets. Throughout this book, we discuss a
variety of approaches that can be used in practice to estimate this minimum
point. One important method is cross-validation (Chapter 5), which is a cross-

validationmethod for estimating test MSE using the training data.

2.2.2 The Bias-Variance Trade-Off

The U-shape observed in the test MSE curves (Figures 2.9–2.11) turns out
to be the result of two competing properties of statistical learning methods.
Though the mathematical proof is beyond the scope of this book, it is
possible to show that the expected test MSE, for a given value x0, can

Figure 3: figure 2.10 from ISLR: Same as previous figure, but true f much closer to
linear. In this case, linear regression provides a very good fit to the data.
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

always be decomposed into the sum of three fundamental quantities: the
variance of f̂(x0), the squared bias of f̂(x0) and the variance of the error

variance

biasterms ε. That is,

E
(
y0 − f̂(x0)

)2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 +Var(ε). (2.7)

Here the notationE
(
y0 − f̂(x0)

)2
defines the expected test MSE, and refers

expected
test MSEto the average test MSE that we would obtain if we repeatedly estimated

f using a large number of training sets, and tested each at x0. The overall

expected test MSE can be computed by averaging E
(
y0 − f̂(x0)

)2
over all

possible values of x0 in the test set.
Equation 2.7 tells us that in order to minimize the expected test error,

we need to select a statistical learning method that simultaneously achieves
low variance and low bias. Note that variance is inherently a nonnegative
quantity, and squared bias is also nonnegative. Hence, we see that the
expected test MSE can never lie below Var(ε), the irreducible error from
(2.3).
What do we mean by the variance and bias of a statistical learning

method? Variance refers to the amount by which f̂ would change if we
estimated it using a different training data set. Since the training data
are used to fit the statistical learning method, different training data sets
will result in a different f̂ . But ideally the estimate for f should not vary
too much between training sets. However, if a method has high variance
then small changes in the training data can result in large changes in f̂ . In
general, more flexible statistical methods have higher variance. Consider the

Figure 4: figure 2.11 from ISLR: Same as previous figure, but true f is farther from
linear.
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A fundamental conclusion

Increase in model flexibility =⇒
decrease in training MSE
U-shape in test MSE.

Small training MSE + large test MSE ↔ overfitting the data!
In practice:

what to do if no test data available?
One example (you will learn later): cross-validation = a method for
estimating test MSE using training data.
Cf. the data partitioning worksheets!!
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Idea behind cross-validation

Cross-validation is essentially one of the resampling methods.

Remember:
Testing error measures average error on measurements that were not
used to train the method.
Available test data set =⇒ testing error easy to compute.

Testing error rate needs to be estimated
Use a very large designated tst set; or
Use the training data!! How?

Mathematical adjustment to the training error rate;
Cross-validate like this:

Estimate the test error rate by holding out a subset of the training
observations from the fitting process, and then applying the statistical
learning method to those held out observations.
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Measuring quality of fit - classification setting

Training error rate (proportion of mistakes made)

1
n

n∑
i=1

1(yi 6= ŷi)

computes the fraction of incorrect classifications
Test error rate

Ave(1(y0 6= ŷ0)

Notes to remember: * there is a (unattainable!) gold standard (a classifier
with the lowest possible error rate) * next best thing: K -nearest neighbors.

illustration...
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Content of this lecture is based on the first two chapters of the textbook
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’. The book is
available online.

Part of this lecture notes are extracted from Prof. Alexandra Chouldechova
data mining notes CMU-95791, released under a
Attribution-NonCommercial-ShareAlike 3.0 United States license.
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