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Goals of this lecture

What is a ‘regression’ function

What is prediction

Elements of simple&multiple linear regression

Best approximation, least squares, residual sum of squares

Basic R command to run a regression model

Looking ahead:
basic Python command to run a regression model
polynomial regression
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The setup: basics

Section 1

The setup: basics
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The setup: basics

What is the prediction task?
16 2. Statistical Learning

0 50 100 200 300

5
10

15
20

25

TV

S
al

es

0 10 20 30 40 50

5
10

15
20

25

Radio
S

al
es

0 20 40 60 80 100

5
10

15
20

25

Newspaper

S
al

es

FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X2, . . . , Xp. We assume that there is some
relationship between Y and X = (X1, X2, . . . , Xp), which can be written
in the very general form

Y = f(X) + ε. (2.1)

Here f is some fixed but unknown function ofX1, . . . , Xp, and ε is a random
error term, which is independent of X and has mean zero. In this formula-

error term
tion, f represents the systematic information that X provides about Y .

systematic
As another example, consider the left-hand panel of Figure 2.2, a plot of

income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of

education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms ε. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.
In general, the function f may involve more than one input variable.

In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

Figure 1: Figure 2.1. from ISLR: Y =Sales plottedagainst TV,Radio and
Newspaper advertising budgets.

Our goal is to develop an accurate model (f ) that can be used to predict
sales on the basis of the three media budgets:

Sales ≈ f (TV ,Radio,Newspaper).
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The setup: basics

Notation
Sales = a reponse, target, or outcome.

The variable we want to predicit.
Denoted by Y .

TV is one of the features, or inputs.
Denoted by X1.

Similarly for Radio and Newspaper.

We can put all the predictors into a single input vector
X = (X1,X2,X3)

Now we can write our model as
Y = f (X ) + ε,

where ε captures measurement errors and other discrepancies between
the response Y and the model f .
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What does it mean to predict Y ?

Here’s some simulated data.
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Look at X = 5. There are many different Y values at X = 5.
When we say predict Y at X = 5, we’re really asking:

What is the expected value (average) of Y at X = 5?
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The regression functionThe regression function
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Definition: Regression function

Formally, the regression function is given by E(Y | X = x). This is the
expected value of Y at X = x.

• The ideal or optimal predictor of Y based on X is thus

f(x) = E(Y | X = x)
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Definition: Regression function
Formally, the regression function is given by E (Y |X = x). This is the
*expected value* of Y at X = x .

The ideal or optimal predictor of Y based on X is thus

f (x) = E (Y |X = x)
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The prediction problemThe prediction problem
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regression function f linear regression f̂ 50-nearest-neighbours f̂

The prediction problem

We want to use the observed data to construct a predictor f̂(x) that is
a good estimate of the regression function f(x) = E(Y | X = x).
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regression function f linear regression f̂ 50-nearest-neighbours f̂
The prediction problem
We want to use the observed data to construct a predictor f̂ (x) that is a
good estimate of the regression function f (x) = E (Y |X = x).
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To summarize

The ideal predictor of a response Y given inputs X = x is given by the
regression function

f (x) = E (Y |X = x)

We don’t know what f is, so the prediction task is to estimate the
regression function from the available data.

The various prediction methods are different ways of using data to
construct estimators f̂ .
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The best method?

Remember: There is no free lunch. . .

* If the data you work with tends to have linear associations, you may be
well-served by a linear model.

* If you know that similar people like similar things, you may be well-served
by a nearest-neighbours method.
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Simple linear regression

Predict a quantitative Y by single predictor variable X

Linear relationship:

Y ≈ β0 + β1X .

Example: sales ≈ β0 + β1 × TV .

β0, β1 are two unknown constants. [parameters, or coefficients.]

Prediction

ŷ = β̂0 + β̂1x .

→ discussion in lecture (with notes).

12 / 22



The setup: basics

Estimating the coefficients
62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

Figure 2: Fig 3.1. ISLR: For the Advertising data, the least squares fit for the
regression of sales onto TV is shown. The fit is found by minimizing the sum of
squared errors. Each grey line segment represents an error, and the fit makes a
compro- mise by averaging their squares. In this case a linear fit captures the
essence of the relationship, although it is somewhat deficient in the left of the plot.

13 / 22



The setup: basics

Many different least squares lines
64 3. Linear Regression

X

Y

−2 −1 0 1 2

X

−2 −1 0 1 2

−1
0

−5
0

5
10

Y

−1
0

−5
0

5
10

FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ε, (3.6)

where ε was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X , while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.
At first glance, the difference between the population regression line and

the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the

Figure 3: Fig. 3.2. ISLR: A simulated data set. Left: The red line represents the
true rela- tionship, f(X) = 2 + 3X, which is known as the population regression
line. The blue line is the least squares line; it is the least squares estimate for f(X)
based on the observed data, shown in black. Right: The population regression line
is again shown in red, and the least squares line in dark blue. In light blue, ten
least squares lines are shown, each computed on the basis of a separate random set
of observations. Each least squares line is different, but on average, the least
squares lines are quite close to the population regression line.
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Multiple linear regression

p predictors, X1, . . . ,Xp, for modeling the continuous response variable Y :

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

fL(X ) := β0 +
∑p

j=1 βjXj is the best linear approximation to the true
regression function.
The true regression function may not be linear.

Estimating the coefficients:
. . . same setup as in simple linear regression β̂j .
→ discussion.
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Section 2

Graphics for the story about multiple linear regression

16 / 22



Graphics for the story about multiple linear regression

68 3. Linear Regression

then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 != 0 and β1 != 0.4

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F-statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term ε. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be
able to perfectly predict Y from X . The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.

Figure 4: ISLR table 3.1.

17 / 22



Graphics for the story about multiple linear regression

72 3. Linear Regression

Simple regression of sales on radio

Coefficient Std. error t-statistic p-value
Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient Std. error t-statistic p-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30

TABLE 3.3.More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales variable is in thousands of units, and the radio and newspaper
variables are in thousands of dollars).

where Xj represents the jth predictor and βj quantifies the association
between that variable and the response. We interpret βj as the average
effect on Y of a one unit increase in Xj , holding all other predictors fixed.
In the advertising example, (3.19) becomes

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper + ε. (3.20)

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coef-
ficients β0,β1, . . . ,βp in (3.19) are unknown, and must be estimated. Given

estimates β̂0, β̂1, . . . , β̂p, we can make predictions using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp. (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0,β1, . . . ,βp

to minimize the sum of squared residuals

RSS =
n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · ·− β̂pxip)
2. (3.22)

0.00115

Figure 5: ISLR table 3.3.
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FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression
estimates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.
Table 3.4 displays the multiple regression coefficient estimates when TV,

radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000
on radio advertising leads to an increase in sales by approximately 189
units. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper

in the multiple regression model is close to zero, and the corresponding
p-value is no longer significant, with a value around 0.86. This illustrates

Figure 6: ISLR fig.3.4.
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Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper −0.001 0.0059 −0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.

that the simple and multiple regression coefficients can be quite different.
This difference stems from the fact that in the simple regression case, the
slope term represents the average effect of a $1,000 increase in newspaper
advertising, ignoring other predictors such as TV and radio. In contrast, in
the multiple regression setting, the coefficient for newspaper represents the
average effect of increasing newspaper spending by $1,000 while holding TV

and radio fixed.
Does it make sense for the multiple regression to suggest no relationship

between sales and newspaper while the simple linear regression implies the
opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This reveals a
tendency to spend more on newspaper advertising in markets where more
is spent on radio advertising. Now suppose that the multiple regression is
correct and newspaper advertising has no direct impact on sales, but radio
advertising does increase sales. Then in markets where we spend more
on radio our sales will tend to be higher, and as our correlation matrix
shows, we also tend to spend more on newspaper advertising in those same
markets. Hence, in a simple linear regression which only examines sales

versus newspaper, we will observe that higher values of newspaper tend to be
associated with higher values of sales, even though newspaper advertising
does not actually affect sales. So newspaper sales are a surrogate for radio

advertising; newspaper gets “credit” for the effect of radio on sales.
This slightly counterintuitive result is very common in many real life

situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one (yet) has suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of attacks versus ice cream sales and
temperature reveals that, as intuition implies, the former predictor is no
longer significant after adjusting for temperature.

Figure 7: ISLR table 3.4.
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TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the
Advertising data.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, X2, . . . , Xp useful in predicting
the response?

2. Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether β1 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether β1 = β2 = · · · = βp = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βj is non-zero.

This hypothesis test is performed by computing the F-statistic,
F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
, (3.23)

Figure 8: ISLR table 3.5
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’.

Part of this lecture notes are extracted from Prof. Alexandra Chouldechova,
released under a Attribution-NonCommercial-ShareAlike 3.0 United States
license.
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