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Goals for this lecture

@ Understand & interpret coefficient estimates in multiple and simple
linear regression

@ Understand & interpret R output for linear models

@ Model diagnostics & assessing model fit

In the handout last week, we have practiced fitting a regression
model in R and Python. We will continue to build on that.

@ The Regression Handout is complementary to this lecture, you should
look over it again as we learn to interpret regression results.
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Some important questions about linear regression model

Q Is at least one of the predictors X1,dots, Xp useful in predicting the
response?

@ Do all the predictors help to explain Y, or is only a subset of the
predictors useful?

© How well does the model fit the data?

@ Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?



Simple linear regression case
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L Simplelinearregression cose |
Is There a Relationship?

Is there a relationship between the response Y and predictor X?

Question J

Recall from last lecture:

@ check whether 5; =0
e Hypothesis test: Hy: 51 =0 vs. H; : B # 0.
e a t-statistic measures the number of standard deviations that (; is away

from 0 (specifically, t =

1—AO )
SE(p1)
e p-value
o this is defined - as usual! - the probability of seeing the data we saw, or
more extreme, under the Hp.
@ in practice, we just read off the t-test. or read off the output of
linear models.



Assessing model fit

Question

Suppose we have rejected the null hypothesis in favor of the alternative.

Now what??

@ Natural: quantify the extent to which the model fits the data.
@ The quality of a linear regression fit is typically assessed using two
related quantities:
o the residual standard error (RSE) and
o the R? statistic.

— advertising example - revisit the statistics output.
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Assessing model fit

Question

Suppose we have rejected the null hypothesis in favor of the alternative.
Now what??

@ Natural: quantify the extent to which the model fits the data.
@ The quality of a linear regression fit is typically assessed using two

related quantities:
o the residual standard error (RSE) and
o the R? statistic.

— advertising example - revisit the statistics output.

Coefficient  Std. error  t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
v 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).



Assessing model fit

Question

Suppose we have rejected the null hypothesis in favor of the alternative.
Now what??

@ Natural: quantify the extent to which the model fits the data.
@ The quality of a linear regression fit is typically assessed using two

related quantities:
o the residual standard error (RSE) and
o the R? statistic.

— advertising example - revisit the statistics output.

Coefficient  Std. error  t-statistic p-value .
Intercept 7.0325 0.4578 15.36 < 0.0001 Quantlty Va‘lue
v 0.0475 0.0027 17.67 < 0.0001 R .
esidual standard error | 3.26

TABLE 3.1. For the Advertising data, coefficients of the least squares model
Jor the regression of number of units sold on TV advertising budget. An increase R? 0.612
0f $1,000 in the TV advertising budget is associated with an increase in sales by .
around 50 units (Recall that the sales variable is in thousands of units, and the _ 1 1
TV variable is in thousands of dollars). F-statistic 312.1
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RSE
A measure of the lack of fit of the model simple linear regression model to

the data:
[ 1
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RSE
A measure of the lack of fit of the model simple linear regression model to

the data:
[ 1

o If the predictions obtained using the model are very close to the true
outcome values (y; ~ y; fori =1, . .., n), then RSE will be small
e we can conclude that the model fits the data very well.
o If §; is very far from y; for one or more observations, then the RSE may
be quite large
e indicating that the model doesn’t fit the data well.
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RSE
A measure of the lack of fit of the model simple linear regression model to

the data:
[ 1

o If the predictions obtained using the model are very close to the true
outcome values (y; ~ y; fori =1, . .., n), then RSE will be small
e we can conclude that the model fits the data very well.
o If §; is very far from y; for one or more observations, then the RSE may
be quite large
e indicating that the model doesn’t fit the data well.

Interpretation

The RSE provides an absolute measure of lack of fit. But since it is
measured in the units of Y , it is not always clear what constitutes a good
RSE. ..




Quantity Value
Residual standard error | 3.26

R? 0.612
F-statistic 312.1

Figure 1: ISLR table 3.2. For the Advertising data, more information about the

least squares model for the regression of number of units sold on TV advertising

budget.
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R2
The R? statistic provides an alternative measure of fit (proportion):

_ TSS—RSS __RSS

2 —_
R TSS TSS

e TSS = total sum of squares > (y; — ¥;)?
@ RSS = residual sum of squares > (y; — ;)?

Discuss: R? measures the proportion of variability in Y that can be explained using X



RZ
The R? statistic provides an alternative measure of fit (proportion):

_ TSS—RSS __RSS

2 —_
R TSS TSS

e TSS = total sum of squares > (y; — ¥;)?
@ RSS = residual sum of squares > (y; — ;)?

Discuss: R? measures the proportion of variability in Y that can be explained using X

Interpretation

Proportion of variance explained.
Always between 0 and 1 (independent of scale of Y).

What's a good value?

Can be challenging to determine ... in general, depends on the application.




Example

Objective:
Use simple linear regression on the ‘Auto’ data set. J

@ Use the 1m() function to perform a simple linear regression with mpg
as the response and horsepower as the predictor.

require (ISLR)

Loading required package: ISLR

data(Auto)
fit.lm <- Im(mpg ~ horsepower, data=Auto)

— Where is the output??

@ Let's take a look at the fit.1lm object.
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Use the summary () function to print the results.

summary (fit.1lm)

Call:
lm(formula = mpg ~ horsepower, data = Auto)

Residuals:
Min 1Q Median 3Q Max
-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) 39.935861 0.717499 55.66 <2e-16 **x*
horsepower -0.157845 0.006446 -24.49 <2e-16 **x*

Signif. codes: O '**x' 0.001 '*x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16 11720



Call:
Ilm(formula = mpg ~ horsepower, data = Auto)

Residuals:
Min 1Q Median 3Q Max
-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 39.935861 0.717499 55.66  <2e-16 **x*
horsepower -0.157845 0.006446 -24.49 <2e-16 **x*

Signif. codes: 0 '#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

@ Is there a relationship between the predictor and the response?
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Call:
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F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

@ Is there a relationship between the predictor and the response?
o Yes

@ How strong is the relationship between the predictor and the response?
e p-value is close to 0: relationship is strong
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Call:
Ilm(formula = mpg ~ horsepower, data = Auto)

Residuals:
Min 1Q Median 3Q Max
-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 39.935861 0.717499 55.66  <2e-16 **x*
horsepower -0.157845 0.006446 -24.49 <2e-16 **x*

éiénif. codes: O '#%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
@ Is there a relationship between the predictor and the response?
o Yes
@ How strong is the relationship between the predictor and the response?
e p-value is close to O: relationship is strong
@ Is the relationship between the predictor and the response positive or

negative?
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Call:
Ilm(formula = mpg ~ horsepower, data = Auto)

Residuals:
Min 1Q Median 3Q Max
-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 39.935861 0.717499 55.66  <2e-16 **x*
horsepower -0.157845 0.006446 -24.49 <2e-16 **x*

Signif. codes: 0 '#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.906 on 390 degrees of freedom

Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

@ Is there a relationship between the predictor and the response?
o Yes
@ How strong is the relationship between the predictor and the response?
e p-value is close to O: relationship is strong
@ Is the relationship between the predictor and the response positive or
negative?
o Coefficient is negative: relationship is negative
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Multiple linear regression case
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L Vultiplelinearregression cose |
Is There a Relationship?

Q: is there a relationship between the Response and Predictor?

@ Multiple case: p predictors; we need to ask whether all of the
regression coefficients are zero: 1 =--- = 5, =07
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L Vultiplelinearregression cose |
Is There a Relationship?

Q: is there a relationship between the Response and Predictor?

@ Multiple case: p predictors; we need to ask whether all of the
regression coefficients are zero: 1 =--- = 5, =07

o Hypothesis test: Hy : 1 =+ = 8, =0 vs. H; : at least one f3; # 0.

o Which statistic?
F_ (TSS — RSS)/p

" RSS/(n—p-—1)
o TSS and RSS defined as in simple case.

@ when there is no relationship between the response and predictors, one
would expect the F-statistic to take on a value close to 1. [this can be
proved via expected values]

o else > 1.

— advertising example - revisit the statistics output.
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Coefficient  Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper

advertising budgets.

| TV radio  newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matriz for TV, radio, newspaper, and sales for the

Advertising data.
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L Mulipleincar regression case |
Warning

— in case of large p, may want to measure partial effects, and do some
variable selection (out of scope Fall 2020).
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Assessing model fit

Question

Suppose we have rejected the null hypothesis in favor of the alternative.
Now what??

@ Same story as for simple regression.

@ Measuring the quality of a linear regression fit:
o the residual standard error (RSE);
o the R? statistic.

— advertising example - revisit the statistics output.
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Coefficient ~ Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001 [ radio newspaper sales
v 0.046 0.0014 32.81 < 0.0001 v 1.0000 0.0548  0.0567  0.7822
radio 0.189 0.0086 21.89 < 0.0001 radio 1.0000  0.3541  0.5762
newspaper —0.001 0.0059 —0.18 0.8599 newspaper 1.0000  0.2283

sales 1.0000

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the

multiple linear regression of number of units sold on radio, TV, and newspaper TABLE 3.5. Correlation matriz for TV, radio, newspaper, and sales for the
advertising budgets. Advertising data.

Quantity Value
Residual standard error | 1.69
R? 0.897
F-statistic 570

Figure 2: ISLR Table 3.6: More information about the least squares model for the
regression of number of units sold on TV, newspaper, and radio advertising

budgets in the Advertising data. Other information about this model was displayed
in Table 3.4.
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3.5. For the Advertising data, a |
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ISLR f
TV and radio as predictors. From the pattern of the residuals, we can see

that there is a pronounced non-linear relationship in the data. The positive
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In addition to looking at RSE and R? statistics, it can be useful to plot the
using

data.
Figure 3



License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
lllinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, " An
Introduction to Statistical Learning: with Applications in R’.
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