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Goals for this lecture

Understand & interpret coefficient estimates in multiple and simple
linear regression
Understand & interpret R output for linear models
Model diagnostics & assessing model fit
In the handout last week, we have practiced fitting a regression
model in R and Python. We will continue to build on that.

The Regression Handout is complementary to this lecture, you should
look over it again as we learn to interpret regression results.
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Some important questions about linear regression model

1 Is at least one of the predictors X1,dots, Xp useful in predicting the
response?

2 Do all the predictors help to explain Y, or is only a subset of the
predictors useful?

3 How well does the model fit the data?

4 Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?
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Simple linear regression case

Simple linear regression case
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Simple linear regression case

Is There a Relationship?

Question
Is there a relationship between the response Y and predictor X?

Recall from last lecture:

check whether β1 = 0
Hypothesis test: H0 : β1 = 0 vs. H1 : β1 6= 0.
a t-statistic measures the number of standard deviations that β1 is away
from 0 (specifically, t = β̂1−0

SE(β̂1) )
p-value

this is defined - as usual! - the probability of seeing the data we saw, or
more extreme, under the H0.
in practice, we just read off the t-test. or read off the output of
linear models.
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Simple linear regression case

Assessing model fit

Question
Suppose we have rejected the null hypothesis in favor of the alternative.
Now what??

Natural: quantify the extent to which the model fits the data.
The quality of a linear regression fit is typically assessed using two
related quantities:

the residual standard error (RSE) and
the R2 statistic.

→ advertising example - revisit the statistics output.

68 3. Linear Regression

then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 != 0 and β1 != 0.4

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F-statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term ε. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be
able to perfectly predict Y from X . The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.

3.1 Simple Linear Regression 69

Quantity Value
Residual standard error 3.26
R2 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of ε. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =
n∑

i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .
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2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
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Simple linear regression case

RSE
A measure of the lack of fit of the model simple linear regression model to
the data:

RSE =
√

1
n − 2RSS =

√√√√ 1
n − 2

n∑
i=1

(yi − ŷi )2

If the predictions obtained using the model are very close to the true
outcome values (ŷi ≈ yi for i = 1, . . . , n), then RSE will be small

we can conclude that the model fits the data very well.
If ŷi is very far from yi for one or more observations, then the RSE may
be quite large

indicating that the model doesn’t fit the data well.

Interpretation
The RSE provides an absolute measure of lack of fit. But since it is
measured in the units of Y , it is not always clear what constitutes a good
RSE. . .
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Simple linear regression case
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the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
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independent of the scale of Y .

Figure 1: ISLR table 3.2. For the Advertising data, more information about the
least squares model for the regression of number of units sold on TV advertising
budget.
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Simple linear regression case

R2

The R2 statistic provides an alternative measure of fit (proportion):

R2 = TSS − RSS
TSS = 1− RSS

TSS

TSS = total sum of squares
∑

(yi − ȳi )2

RSS = residual sum of squares
∑

(yi − ŷi )2

Discuss: R2 measures the proportion of variability in Y that can be explained using X

Interpretation
Proportion of variance explained.
Always between 0 and 1 (independent of scale of Y ).

What’s a good value?
Can be challenging to determine . . . in general, depends on the application.
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Simple linear regression case

Example

Objective:
Use simple linear regression on the ‘Auto‘ data set.

Use the lm() function to perform a simple linear regression with mpg
as the response and horsepower as the predictor.

require(ISLR)

Loading required package: ISLR
data(Auto)
fit.lm <- lm(mpg ~ horsepower, data=Auto)

→ Where is the output??

Let’s take a look at the fit.lm object.
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Simple linear regression case

Use the summary() function to print the results.
summary(fit.lm)

Call:
lm(formula = mpg ~ horsepower, data = Auto)

Residuals:
Min 1Q Median 3Q Max

-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16 11 / 20



Simple linear regression case

Call:
lm(formula = mpg ~ horsepower, data = Auto)
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

Is there a relationship between the predictor and the response?

Yes
How strong is the relationship between the predictor and the response?

p-value is close to 0: relationship is strong
Is the relationship between the predictor and the response positive or
negative?

Coefficient is negative: relationship is negative
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Residuals:
Min 1Q Median 3Q Max

-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.935861 0.717499 55.66 <2e-16 ***
horsepower -0.157845 0.006446 -24.49 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
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Multiple linear regression case

Is There a Relationship?

Q: is there a relationship between the Response and Predictor?

Multiple case: p predictors; we need to ask whether all of the
regression coefficients are zero: β1 = · · · = βp = 0?

Hypothesis test: H0 : β1 = · · · = βp = 0 vs. H1 : at least one βi 6= 0.
Which statistic?

F = (TSS − RSS)/p
RSS/(n − p − 1) .

TSS and RSS defined as in simple case.
when there is no relationship between the response and predictors, one
would expect the F-statistic to take on a value close to 1. [this can be
proved via expected values]
else > 1.

→ advertising example - revisit the statistics output.
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Multiple linear regression case
74 3. Linear Regression

Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper −0.001 0.0059 −0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.

that the simple and multiple regression coefficients can be quite different.
This difference stems from the fact that in the simple regression case, the
slope term represents the average effect of a $1,000 increase in newspaper
advertising, ignoring other predictors such as TV and radio. In contrast, in
the multiple regression setting, the coefficient for newspaper represents the
average effect of increasing newspaper spending by $1,000 while holding TV

and radio fixed.
Does it make sense for the multiple regression to suggest no relationship

between sales and newspaper while the simple linear regression implies the
opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This reveals a
tendency to spend more on newspaper advertising in markets where more
is spent on radio advertising. Now suppose that the multiple regression is
correct and newspaper advertising has no direct impact on sales, but radio
advertising does increase sales. Then in markets where we spend more
on radio our sales will tend to be higher, and as our correlation matrix
shows, we also tend to spend more on newspaper advertising in those same
markets. Hence, in a simple linear regression which only examines sales

versus newspaper, we will observe that higher values of newspaper tend to be
associated with higher values of sales, even though newspaper advertising
does not actually affect sales. So newspaper sales are a surrogate for radio

advertising; newspaper gets “credit” for the effect of radio on sales.
This slightly counterintuitive result is very common in many real life

situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one (yet) has suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of attacks versus ice cream sales and
temperature reveals that, as intuition implies, the former predictor is no
longer significant after adjusting for temperature.

3.2 Multiple Linear Regression 75

TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the
Advertising data.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, X2, . . . , Xp useful in predicting
the response?

2. Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether β1 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether β1 = β2 = · · · = βp = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βj is non-zero.

This hypothesis test is performed by computing the F-statistic,
F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
, (3.23)
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Multiple linear regression case

Warning

→ in case of large p, may want to measure partial effects, and do some
variable selection (out of scope Fall 2020).
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Multiple linear regression case

Assessing model fit

Question
Suppose we have rejected the null hypothesis in favor of the alternative.
Now what??

Same story as for simple regression.
Measuring the quality of a linear regression fit:

the residual standard error (RSE);
the R2 statistic.

→ advertising example - revisit the statistics output.
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Multiple linear regression case

74 3. Linear Regression

Coefficient Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper −0.001 0.0059 −0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.

that the simple and multiple regression coefficients can be quite different.
This difference stems from the fact that in the simple regression case, the
slope term represents the average effect of a $1,000 increase in newspaper
advertising, ignoring other predictors such as TV and radio. In contrast, in
the multiple regression setting, the coefficient for newspaper represents the
average effect of increasing newspaper spending by $1,000 while holding TV

and radio fixed.
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that the correlation between radio and newspaper is 0.35. This reveals a
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is spent on radio advertising. Now suppose that the multiple regression is
correct and newspaper advertising has no direct impact on sales, but radio
advertising does increase sales. Then in markets where we spend more
on radio our sales will tend to be higher, and as our correlation matrix
shows, we also tend to spend more on newspaper advertising in those same
markets. Hence, in a simple linear regression which only examines sales

versus newspaper, we will observe that higher values of newspaper tend to be
associated with higher values of sales, even though newspaper advertising
does not actually affect sales. So newspaper sales are a surrogate for radio

advertising; newspaper gets “credit” for the effect of radio on sales.
This slightly counterintuitive result is very common in many real life

situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one (yet) has suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of attacks versus ice cream sales and
temperature reveals that, as intuition implies, the former predictor is no
longer significant after adjusting for temperature.

3.2 Multiple Linear Regression 75

TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the
Advertising data.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in
answering a few important questions.

1. Is at least one of the predictors X1, X2, . . . , Xp useful in predicting
the response?

2. Do all the predictors help to explain Y , or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether β1 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether β1 = β2 = · · · = βp = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

H0 : β1 = β2 = · · · = βp = 0

versus the alternative

Ha : at least one βj is non-zero.

This hypothesis test is performed by computing the F-statistic,
F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
, (3.23)

76 3. Linear Regression

Quantity Value
Residual standard error 1.69
R2 0.897
F-statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

where, as with simple linear regression, TSS =
∑

(yi − ȳ)2 and RSS =∑
(yi− ŷi)2. If the linear model assumptions are correct, one can show that

E{RSS/(n− p− 1)} = σ2

and that, provided H0 is true,

E{(TSS− RSS)/p} = σ2.

Hence, when there is no relationship between the response and predictors,
one would expect the F-statistic to take on a value close to 1. On the other
hand, if Ha is true, then E{(TSS − RSS)/p} > σ2, so we expect F to be
greater than 1.
The F-statistic for the multiple linear regression model obtained by re-

gressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this
example the F-statistic is 570. Since this is far larger than 1, it provides
compelling evidence against the null hypothesis H0. In other words, the
large F-statistic suggests that at least one of the advertising media must
be related to sales. However, what if the F-statistic had been closer to
1? How large does the F-statistic need to be before we can reject H0 and
conclude that there is a relationship? It turns out that the answer depends
on the values of n and p. When n is large, an F-statistic that is just a
little larger than 1 might still provide evidence against H0. In contrast,
a larger F-statistic is needed to reject H0 if n is small. When H0 is true
and the errors εi have a normal distribution, the F-statistic follows an
F-distribution.6 For any given value of n and p, any statistical software
package can be used to compute the p-value associated with the F-statistic
using this distribution. Based on this p-value, we can determine whether
or not to reject H0. For the advertising data, the p-value associated with
the F-statistic in Table 3.6 is essentially zero, so we have extremely strong
evidence that at least one of the media is associated with increased sales.
In (3.23) we are testing H0 that all the coefficients are zero. Sometimes

we want to test that a particular subset of q of the coefficients are zero.
This corresponds to a null hypothesis

H0 : βp−q+1 = βp−q+2 = . . . = βp = 0,

6Even if the errors are not normally-distributed, the F-statistic approximately follows
an F-distribution provided that the sample size n is large.

Figure 2: ISLR Table 3.6: More information about the least squares model for the
regression of number of units sold on TV, newspaper, and radio advertising
budgets in the Advertising data. Other information about this model was displayed
in Table 3.4.
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Multiple linear regression case

In addition to looking at RSE and R2 statistics, it can be useful to plot the
data. 3.2 Multiple Linear Regression 81

Sales

Radio

TV

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those visible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.

gression. It suggests a synergy or interaction effect between the advertising
media, whereby combining the media together results in a bigger boost to
sales than using any single medium. In Section 3.3.2, we will discuss ex-
tending the linear model to accommodate such synergistic effects through
the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to
apply (3.21) in order to predict the response Y on the basis of a set of
values for the predictors X1, X2, . . . , Xp. However, there are three sorts of
uncertainty associated with this prediction.

1. The coefficient estimates β̂0, β̂1, . . . , β̂p are estimates for β0,β1, . . . ,βp.
That is, the least squares plane

Ŷ = β̂0 + β̂1X1 + · · ·+ β̂pXp

is only an estimate for the true population regression plane

f(X) = β0 + β1X1 + · · ·+ βpXp.

The inaccuracy in the coefficient estimates is related to the reducible
error from Chapter 2. We can compute a confidence interval in order
to determine how close Ŷ will be to f(X).

Figure 3: ISLR fig 3.5. For the Advertising data, a linear regression fit to sales
using TV and radio as predictors. From the pattern of the residuals, we can see
that there is a pronounced non-linear relationship in the data. The positive
residuals (those visible above the surface), tend to lie along the 45-degree line,
where TV and Radio budgets are split evenly. The negative residuals (most not
visible), tend to lie away from this line, where budgets are more lopsided.
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Multiple linear regression case

License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’.
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