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Goals for this lecture

Understand & interpret intervals (confidence & prediction) in multiple
and simple linear regression
Fit a regression model in Python
Understand & interpret Python output for linear models
Many other considerations for regression modeling
e qualitative predictors [another semester]
e extensions of the linear model [removing additive assumption; non-linear
relationships]
o potential problems [simple overview].
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Prediction using regression
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The starting point of regression

What are we really modeling here?

@ Previously:

e estimating parameters based on an iid sample Yi,...,Y,

o = E[Yi]=---=E[Y,]

o in particular, E[Y] does not depend on athe value of any other variable.
@ Regression:
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The starting point of regression

What are we really modeling here?

@ Previously:

e estimating parameters based on an iid sample Yi,...,Y,

o = E[Yi]=---=E[Y,].

o in particular, E[Y] does not depend on athe value of any other variable.
@ Regression:

e random variable Y has a mean that depends on (one or several)

non-random vars X, ..., X, (predictors)
o Deterministic model: Y = g + 51X
o Probabilistic model: E[Y] = 3y + 81 X. Equivalently:

Y= [Bo+6HX + €

deterministic  output ~ random  output

o Least squares estimates Bo and Bl minimize the RSS.

— s0... now what??



Recall this example from previous lecture

@ Auto data set, regression on Y=mpg vs. X=horsepower.
fit.1lm <- lm(mpg ~ horsepower, data=Auto)

@ What is the predicted mpg associated with a horsepower of 987 What
are the associated 95% confidence and prediction intervals?

new <- data.frame(horsepower = 98)
predict(fit.1m, new) # predicted mpg

1
24.46708
predict(fit.1lm, new, interval="confidence") # conf interval

fit 1lwr upr
1 24.46708 23.97308 24.96108
predict(fit.1lm, new, interval="prediction") # pred interval

fit 1lwr upr
1 24.46708 14.8094 34.12476

@ — confidence interval vs. prediction interval <
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Confidence vs. prediction intervals

Three sorts of uncertainty associated with the prediction of Y based on
Xl, N ,Xp:

° ﬁA; ~ [3;: least squares plane is an estimate for the true regression
plane.
e reducible error
@ assuming a linear model for f(X) is usually an approximation of reality
e model bias [potential reducible error?]
e to operate here, we ignore this discrepancy
@ even if we knew true f3;, still no perfect knowledge of Y because of
random error €
e irreducible error
e how much will Y vary from y?
e we use prediction intervals. Always wider than confidence intervals.
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Example: Advertising confidence

Confidence interval

Quantify the uncertainty surrounding the average sales over a large number
of cities.

For example:

@ given that $100,000 is spent on TV advertising and

@ $20,000 is spent on radio advertising in each city,

e the 95 % confidence interval is [10,985, 11,528].

@ We interpret this to mean that 95 % of intervals of this form will
contain the true value of f(X).



Example: Advertising prediction

Prediction interval
Can be used to quantify the uncertainty surrounding sales for a particular
city.

Given that $100,000 is spent on TV advertising and

$20,000 is spent on radio advertising in that city

the 95 % prediction interval is [7,930, 14,580].

We interpret this to mean that 95 % of intervals of this form will
contain the true value of Y for this city.

— Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.



Other considerations and extensions
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Qualitative predictors

This is out of scope this semester (we are out of time!), but consider this setup:

e there may be a qualitative predictor (that, is a discrete random variable
X;) — it's also called a factor

@ suppose X; has only two levels (e.g. female and not female)

@ we use a dummy variable

{1, if ith person is female
Xi =

0, if ith person is not female
@ use this as predictor in the regression equation.

The model becomes:

Bo + B1 + €, if ith person is female
Bo + €;, if ith person is not female

YI:/80+/81Xi+€:{
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The model becomes:

Bo + 1 + €, if ith person is female
Bo + €;, if ith person is not female

YI—/80+/81Xi+5—{

Interpret:
@ [y = average Y among non-females

@ (o + f1 = average Y among females
@ (31 average difference in Y between the two groups.
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_ Other considerations and extensions |
Extensions of the linear model

What is wrong with the linear model? It works quite well!

Yes — but sometimes the (restrictive) assumptions are violated in practice.

Assumption 1: additivity

The relationship between the predictors and response is additive.
o effect of changes in a predictor X; on the response Y is independent of
the values of the other predictors.

v

Assumption 2: linearity

The relationship between the predictors and response is linear.
@ the change in the response Y due to a one-unit change in X; is
constant, regardless of the value of Xj.
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Removing the additive assumption

Previous analysis of Advertising data: both TV and radio seem
associated with sales.

@ The linear models that formed the basis for this conclusion:

sales = By 4+ 1 TV + Boradio 4+ B3newspaper + €

@ We will now [in the notes] explain how to augment this model by
allowing interaction between radio and TV in predicting sales:
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Removing the additive assumption

Previous analysis of Advertising data: both TV and radio seem
associated with sales.

@ The linear models that formed the basis for this conclusion:
sales = By 4+ 1 TV + Boradio 4+ B3newspaper + €

@ We will now [in the notes] explain how to augment this model by
allowing interaction between radio and TV in predicting sales:

sales = o + 1 X TV + B2 X radio + [33 x (radio x TV) + ¢
= Bo + (p1 + B3 x radio) x TV + (2 X radio + €. (3.33)

Interpretation:

@ (33 = increase in the effectiveness of TV advertising for a one unit
increase in radio advertising (or vice-versa).
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Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,

as in (3.33).

Discuss:
@ main effects

Figure 1: ISLR Table 3.9

@ hierarchical principle
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-
Removing the linear assumption

Polynomial regression

models non-linear relationships.
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FIgU re 2: IsLR Fig. 3.8. The Auto data set. For a number of cars, mpg and horsepower are shown. The linear regression
fit is shown in orange. The linear regression fit for a model that includes horsepower"2 is shown as a blue curve. The linear
regression fit for a model that includes all polynomials of horsepower up to fifth-degree is shown in green. 15/19
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Figure 3: ISLR Fig. 3.8.

Coefficient  Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower —0.4662 0.0311 —15.0 < 0.0001
horsepower? 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower?.

Figure 4: ISLR Table 3.10
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Potential problems
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Common issues and problems

@ Non-linearity of the response-predictor relationships. 2. Correlation of
error terms.

@ Non-constant variance of error terms.

© Outliers.

@ High-leverage points.

© Collinearity

(You will learn to deal with these in another course that focuses more on using regression in your application domain.)
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
lllinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, " An
Introduction to Statistical Learning: with Applications in R’.
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