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Goals for this lecture

Understand & interpret intervals (confidence & prediction) in multiple
and simple linear regression
Fit a regression model in Python
Understand & interpret Python output for linear models
Many other considerations for regression modeling

qualitative predictors [another semester]
extensions of the linear model [removing additive assumption; non-linear
relationships]
potential problems [simple overview].
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Prediction using regression

The starting point of regression

What are we really modeling here?

Previously:
estimating parameters based on an iid sample Y1, . . . ,Yn
=⇒ E [Y1] = · · · = E [Yn].
in particular, E [Y ] does not depend on athe value of any other variable.

Regression:

random variable Y has a mean that depends on (one or several)
non-random vars X1, . . . ,Xp (predictors)
Deterministic model: Y = β0 + β1X
Probabilistic model: E [Y ] = β0 + β1X . Equivalently:

Y = β0 + β1X︸ ︷︷ ︸
deterministic output

+ ε︸︷︷︸
random output

Least squares estimates β̂0 and β̂1 minimize the RSS.

→ so. . . now what??
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Prediction using regression

Recall this example from previous lecture

Auto data set, regression on Y=mpg vs. X=horsepower.

fit.lm <- lm(mpg ~ horsepower, data=Auto)

What is the predicted mpg associated with a horsepower of 98? What
are the associated 95% confidence and prediction intervals?

new <- data.frame(horsepower = 98)
predict(fit.lm, new) # predicted mpg

1
24.46708
predict(fit.lm, new, interval="confidence") # conf interval

fit lwr upr
1 24.46708 23.97308 24.96108
predict(fit.lm, new, interval="prediction") # pred interval

fit lwr upr
1 24.46708 14.8094 34.12476

→ confidence interval vs. prediction interval←
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Prediction using regression

Confidence vs. prediction intervals

Three sorts of uncertainty associated with the prediction of Y based on
X1, . . . ,Xp:

β̂i ≈ βi : least squares plane is an estimate for the true regression
plane.

reducible error
assuming a linear model for f (X ) is usually an approximation of reality

model bias [potential reducible error?]
to operate here, we ignore this discrepancy

even if we knew true βi , still no perfect knowledge of Y because of
random error ε

irreducible error
how much will Y vary from Ŷ ?
we use prediction intervals. Always wider than confidence intervals.
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Prediction using regression

Example: Advertising confidence

Confidence interval
Quantify the uncertainty surrounding the average sales over a large number
of cities.

For example:

given that $100,000 is spent on TV advertising and
$20,000 is spent on radio advertising in each city,
the 95 % confidence interval is [10,985, 11,528].
We interpret this to mean that 95 % of intervals of this form will
contain the true value of f (X ).

7 / 19



Prediction using regression

Example: Advertising prediction

Prediction interval
Can be used to quantify the uncertainty surrounding sales for a particular
city.

Given that $100,000 is spent on TV advertising and
$20,000 is spent on radio advertising in that city
the 95 % prediction interval is [7,930, 14,580].
We interpret this to mean that 95 % of intervals of this form will
contain the true value of Y for this city.

→ Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.
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Other considerations and extensions

Other considerations and extensions
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Other considerations and extensions

Qualitative predictors
This is out of scope this semester (we are out of time!), but consider this setup:

there may be a qualitative predictor (that, is a discrete random variable
Xi) – it’s also called a factor
suppose Xi has only two levels (e.g. female and not female)
we use a dummy variable

xi =
{
1, if ith person is female
0, if ith person is not female

use this as predictor in the regression equation.

The model becomes:

yi = β0 + β1xi + ε =
{
β0 + β1 + εi , if ith person is female
β0 + εi , if ith person is not female
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Other considerations and extensions

The model becomes:

yi = β0 + β1xi + ε =
{
β0 + β1 + εi , if ith person is female
β0 + εi , if ith person is not female

Interpret:
β0 = average Y among non-females
β0 + β1 = average Y among females
β1 average difference in Y between the two groups.
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Other considerations and extensions

Extensions of the linear model

What is wrong with the linear model? It works quite well!

Yes – but sometimes the (restrictive) assumptions are violated in practice.

Assumption 1: additivity
The relationship between the predictors and response is additive.

effect of changes in a predictor Xj on the response Y is independent of
the values of the other predictors.

Assumption 2: linearity
The relationship between the predictors and response is linear.

the change in the response Y due to a one-unit change in Xj is
constant, regardless of the value of Xj .
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Other considerations and extensions

Removing the additive assumption
Previous analysis of Advertising data: both TV and radio seem
associated with sales.

The linear models that formed the basis for this conclusion:

sales = β0 + β1TV + β2radio + β3newspaper + ε

We will now [in the notes] explain how to augment this model by
allowing interaction between radio and TV in predicting sales:

sales = β0 + β1 × TV + β2 × radio + β3 × (radio × TV ) + ε

= β0 + (β1 + β3 × radio)× TV + β2 × radio + ε. (3.33)

Interpretation:
β3 = increase in the effectiveness of TV advertising for a one unit
increase in radio advertising (or vice-versa).
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Other considerations and extensions

88 3. Linear Regression

Coefficient Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

where β̃1 = β1 + β3X2. Since β̃1 changes with X2, the effect of X1 on Y is
no longer constant: adjusting X2 will change the impact of X1 on Y .
For example, suppose that we are interested in studying the productiv-

ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units ≈ 1.2 + 3.4× lines+ 0.22× workers + 1.4× (lines × workers)

= 1.2 + (3.4 + 1.4× workers)× lines+ 0.22× workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 + 1.4 × workers. Hence the more workers we have, the
stronger will be the effect of lines.
We now return to the Advertising example. A linear model that uses

radio, TV, and an interaction between the two to predict sales takes the
form

sales = β0 + β1 × TV+ β2 × radio+ β3 × (radio × TV) + ε

= β0 + (β1 + β3 × radio)× TV+ β2 × radio + ε. (3.33)

We can interpret β3 as the increase in the effectiveness of TV advertising
for a one unit increase in radio advertising (or vice-versa). The coefficients
that result from fitting the model (3.33) are given in Table 3.9.
The results in Table 3.9 strongly suggest that the model that includes the

interaction term is superior to the model that contains only main effects.
main effect

The p-value for the interaction term, TV×radio, is extremely low, indicating
that there is strong evidence for Ha : β3 #= 0. In other words, it is clear that
the true relationship is not additive. The R2 for the model (3.33) is 96.8%,
compared to only 89.7% for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 − 89.7)/(100−
89.7) = 69% of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coefficient

Figure 1: ISLR Table 3.9

Discuss:
main effects
hierarchical principle
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Other considerations and extensions

Removing the linear assumption
Polynomial regression
models non-linear relationships.

3.3 Other Considerations in the Regression Model 91
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower2 is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors in the model. For example,
the points in Figure 3.8 seem to have a quadratic shape, suggesting that a

quadratic
model of the form

mpg = β0 + β1 × horsepower + β2 × horsepower2 + ε (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X1 = horsepower

and X2 = horsepower2. So we can use standard linear regression software to
estimate β0,β1, and β2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R2 of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.
If including horsepower2 led to such a big improvement in the model, why

not include horsepower3, horsepower4, or even horsepower5? The green curve

Figure 2: ISLR Fig. 3.8. The Auto data set. For a number of cars, mpg and horsepower are shown. The linear regression
fit is shown in orange. The linear regression fit for a model that includes horsepowerˆ2 is shown as a blue curve. The linear
regression fit for a model that includes all polynomials of horsepower up to fifth-degree is shown in green. 15 / 19
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower2 is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.
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is highly significant.
If including horsepower2 led to such a big improvement in the model, why

not include horsepower3, horsepower4, or even horsepower5? The green curve

Figure 3: ISLR Fig. 3.8.
92 3. Linear Regression

Coefficient Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower −0.4662 0.0311 −15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower2.

in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.
The approach that we have just described for extending the linear model

to accommodate non-linear relationships is known as polynomial regres-
sion, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-linear
extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many prob-
lems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.

2. Correlation of error terms.

3. Non-constant variance of error terms.

4. Outliers.

5. High-leverage points.

6. Collinearity.

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.

1. Non-linearity of the Data

The linear regression model assumes that there is a straight-line relation-
ship between the predictors and the response. If the true relationship is
far from linear, then virtually all of the conclusions that we draw from the
fit are suspect. In addition, the prediction accuracy of the model can be
significantly reduced.
Residual plots are a useful graphical tool for identifying non-linearity.

residual plot
Given a simple linear regression model, we can plot the residuals, ei =
yi − ŷi, versus the predictor xi. In the case of a multiple regression model,

Figure 4: ISLR Table 3.10
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Potential problems

Common issues and problems

1 Non-linearity of the response-predictor relationships. 2. Correlation of
error terms.

2 Non-constant variance of error terms.
3 Outliers.
4 High-leverage points.
5 Collinearity

(You will learn to deal with these in another course that focuses more on using regression in your application domain.)
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Potential problems

License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’.
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