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Goals for this lecture

Review basics of testing vs. training MSE in the regression setting
Review why we cross-validate
See a couple of examples
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First, we recall the notation and set the context.

Let’s review a couple of slides extracted from
514-3.3-StatisticalLearning-ModelAccuracyEtc.pdf
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Review - estimating f

Notation and setup

Observe: a quantitative response Y , p different predictors,
X1,X2, . . . ,Xp.

Assume: some relationship between Y and X = (X1,X2, ...,Xp), which
can be written in the very general form

Y = f (X ) + ε.

f is some fixed but unknown function of X1,X2, . . . ,Xp

18 2. Statistical Learning

Years of Education

Sen
ior

ity

Incom
e

FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X , since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
The accuracy of Ŷ as a prediction for Y depends on two quantities,

which we will call the reducible error and the irreducible error. In general,
reducible
error

irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X . Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.
Why is the irreducible error larger than zero? The quantity ε may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

ε is a random error term, which is independent of X and has mean zero.

In this formulation, f represents the *systematic* information that X
provides about Y .
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[Regression setting]1 f , Y = f (X ) + ε, f̂ , Ŷ = f̂ (X )
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, . . . , Xp are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X , since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.
The accuracy of Ŷ as a prediction for Y depends on two quantities,

which we will call the reducible error and the irreducible error. In general,
reducible
error

irreducible
error

f̂ will not be a perfect estimate for f , and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f̂ by using the most appropriate statistical learning technique to
estimate f . However, even if it were possible to form a perfect estimate for
f , so that our estimated response took the form Ŷ = f(X), our prediction
would still have some error in it! This is because Y is also a function of
ε, which, by definition, cannot be predicted using X . Therefore, variability
associated with ε also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f , we
cannot reduce the error introduced by ε.
Why is the irreducible error larger than zero? The quantity ε may con-

tain unmeasured variables that are useful in predicting Y : since we don’t
measure them, f cannot use them for its prediction. The quantity ε may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

22 2. Statistical Learning

Years of Education

Sen
ior

ity

Incom
e

FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as β0,β1, . . . ,βp in the linear model (2.4), than it is to fit
an entirely arbitrary function f . The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f . If the chosen model is too far from the true f , then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms

flexible
for f . But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they

overfitting
follow the errors, or noise, too closely. These issues are discussed through-

noise
out this book.
Figure 2.4 shows an example of the parametric approach applied to the

Income data from Figure 2.3. We have fit a linear model of the form

income ≈ β0 + β1 × education+ β2 × seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating β0, β1, and
β2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.3
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f . Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f , they have the potential
to accurately fit a wider range of possible shapes for f . Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f , in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f .
An example of a non-parametric approach to fitting the Income data is

shown in Figure 2.5. A thin-plate spline is used to estimate f . This ap-
thin-plate
splineproach does not impose any pre-specified model on f . It instead attempts

to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f , from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.
As we have seen, there are advantages and disadvantages to parametric

and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f . For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.

1ISLR book figures.
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Assessing model accuracy
Task: decide, for any given set of data, which method produces the
best results.

Selecting the best approach can be one of the most challenging parts of
performing statistical learning in practice.

Need: measure how well predictions match observed data.
→ quantify the extent to which the predicted response value for a given
observation is close to the true response value for that observation.

Training Mean squared error (MSE)

train.MSE = 1
n

n∑
i=1

(yi − f̂ (xi))2

f̂ (xi) is the prediction that f gives for the ith observation.

Real question:
What is the accuracy of the predictions that we obtain when we apply our
method to *previously* *unseen* test data?
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Training vs. test data
Example 1
Goal: Develop an algorithm to predict a stock’s price based on previous stock
returns.

We can train the method using stock returns from the past 6 months.
But we don’t really care how well our method predicts last week’s stock price.
We instead care about how well it will predict tomorrow’s price or next
month’s price.

Example 2
Goal: predict diabetes risk for future patients based on their clinical measurements.

Clinical measurements (e.g. weight, blood pressure, height, age, family history
of disease) for a number of patients, + info whether each patient has diabetes.
Train a statistical learning method to predict risk of diabetes based on
clinical measurements.
No interest: whether method accurately predicts diabetes risk for patients
used to train the model, since we already know which of those patients have
diabetes.
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The test MSE

(x0, y0) a previously unseen test observation
Goal: f̂ (x0) ≈ y0?

Test MSE

test.MSE = Ave(y0 − f̂ (x0))2

average squared prediction error for test observations (x0, y0).

How to select a method that minimizes MSE?
Scenario: test data available

Set of observations not used to train the statistical model.
Evaluate test MSE, Ave(y0 − f̂ (x0))2 on that set.
We’ll partition the given sample into training & testing data sets.

9 / 28



Examples

Examples

10 / 28



Examples

Training and testing MSE on simulated data

set.seed(1)
n = 30
x = sort(runif(n, -3, 3))
y = 2*x + 2*rnorm(n)
x0 = sort(runif(n, -3, 3))
y0 = 2*x0 + 2*rnorm(n)

par(mfrow=c(1,2))
xlim = range(c(x,x0)); ylim = range(c(y,y0))
plot(x, y, xlim=xlim, ylim=ylim, main="Training data")
plot(x0, y0, xlim=xlim, ylim=ylim, main="Test data")
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Examples

# Training and test errors for a simple linear model
lm.1 = lm(y ~ x)
yhat.1 = predict(lm.1, data.frame(x=x))
train.err.1 = mean((y-yhat.1)^2)
y0hat.1 = predict(lm.1, data.frame(x=x0))
test.err.1 = mean((y0-y0hat.1)^2)

par(mfrow=c(1,2))
plot(x, y, xlim=xlim, ylim=ylim, main="Training data")
lines(x, yhat.1, col=2, lwd=2)
text(0, -6, label=paste("Training error:", round(train.err.1,3)))

plot(x0, y0, xlim=xlim, ylim=ylim, main="Test data")
lines(x0, y0hat.1, col=3, lwd=2)
text(0, -6, label=paste("Test error:", round(test.err.1,3)))
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Cross-validation

Review: idea behind cross-validation
Cross-validation is essentially one of the resampling methods. > Estimate
the test error rate by holding out a subset of the training observations from
the fitting process, and then applying the statistical learning method to
those held out observations.

Remember:
Testing error measures average error on measurements that were not
used to train the method.
Available test data set =⇒ testing error easy to compute.

Given a data set, how can we estimate test error? (Can’t simply
simulate more data for testing.) We know training error won’t work.

A tried-and-true technique: sample-splitting
Split the data set into two parts
First part: train the model/method
Second part: make predictions
Evaluate observed test error 16 / 28



Cross-validation

Sample-splitting on an example
dat=read.table("http://www.stat.cmu.edu/~ryantibs/statcomp/data/xy.dat")
head(dat, 3)

x y
1 -2.908021 -7.298187
2 -2.713143 -3.105055
3 -2.439708 -2.855283

n = nrow(dat)
# Split data in half, randomly
set.seed(0)
inds = sample(rep(1:2, length=n))
head(inds, 10)

[1] 2 2 1 1 2 1 1 2 2 1

table(inds)

inds
1 2
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Cross-validation

dat.tr = dat[inds==1,] # Training data
dat.te = dat[inds==2,] # Test data

plot(dat$x, dat$y, pch=c(21,19)[inds], main="Sample-splitting")
legend("topleft", legend=c("Training","Test"), pch=c(21,19))
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Cross-validation

# Train on the first half
lm.1 = lm(y ~ x, data=dat.tr)

# Predict on the second half
pred.1 = predict(lm.1, data.frame(x=dat.te$x))

# evaluate test error
test.err.1 = mean((dat.te$y - pred.1)^2)
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Cross-validation

# Plot the results
xx = seq(min(dat$x), max(dat$x), length=100)
plot(dat$x, dat$y, pch=c(21,19)[inds], main="Sample-splitting")
lines(xx, predict(lm.1, data.frame(x=xx)), col=2, lwd=2)
legend("topleft", legend=c("Training","Test"), pch=c(21,19))
text(0, -6, label=paste("Test error:", round(test.err.1,3)))
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Cross-validation

Why cross-validation?

Sample-splitting is simple, effective. But its it estimates the test error when
the model/method is trained on less data (say, roughly half as much)

An improvement over sample splitting: k-fold cross-validation

Split data into k parts or folds
Use all but one fold to train your model/method
Use the left out folds to make predictions
Rotate around the roles of folds, k rounds total
Compute squared error of all predictions, in the end

A common choice is k = 5 or k = 10 (sometimes k = n, called
leave-one-out!)
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Example

# Split data in 5 parts, randomly
k = 5
set.seed(0)
inds = sample(rep(1:k, length=n))
head(inds, 10)

[1] 4 4 4 1 4 3 3 5 3 3

table(inds)

inds
1 2 3 4 5

10 10 10 10 10
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Cross-validation

# Now run cross-validation: easiest with for loop, running over
# which part to leave out
pred.mat = matrix(0, n, 2) # Empty matrix to store predictions
for (i in 1:k) {

cat(paste("Fold",i,"... "))

dat.tr = dat[inds!=i,] # Training data
dat.te = dat[inds==i,] # Test data

# Train our models
lm.1.minus.i = lm(y ~ x, data=dat.tr)

# Record predictions
pred.mat[inds==i,1] = predict(lm.1.minus.i,data.frame(x=dat.te$x))

}

Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
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Cross-validation

# Compute cross-validation error
cv.errs = colMeans((pred.mat - dat$y)^2)
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Cross-validation
# Plot the results
par(mfrow=c(1,2))
xx = seq(min(dat$x), max(dat$x), length=100)
plot(dat$x, dat$y, pch=20, col=inds+1, main="Cross-validation")
lines(xx, predict(lm.1, data.frame(x=xx)), # Note: model trained on FULL data!

lwd=2, lty=2)
legend("topleft", legend=paste("Fold",1:k), pch=20, col=2:(k+1))
text(0, -6, label=paste("CV error:", round(cv.errs[1],3)))
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Cross-validation

# Now we visualize the different models trained,
# one for each CV fold
for (i in 1:k) {

dat.tr = dat[inds!=i,] # Training data
dat.te = dat[inds==i,] # Test data

# Train our models
lm.1.minus.i = lm(y ~ x, data=dat.tr)

# Plot fitted models
cols = c("red","gray")
plot(dat$x, dat$y, pch=20, col=cols[(inds!=i)+1],

main=paste("Fold",i))
lines(xx, predict(lm.1.minus.i, data.frame(x=xx)), lwd=2, lty=2)
legend("topleft", legend=c(paste("Fold",i),"Other folds"),

pch=20, col=cols)
text(0, -6, label=paste("Fold",i,"error:",

round(mean((dat.te$y - pred.mat[inds==i,1])^2),3)))
}
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License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
Illinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, ’ An
Introduction to Statistical Learning: with Applications in R’.

The simulated test/train data example is taken from Prof. Ryan Tibshirani’s
statistical computing course notes.
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