Cross-validation

Looking back at evaluating model accuracy

Sonja Petrovié
Created for ITMD/ITMS/STAT 514

Spring 2021.

Goals for this lecture

@ Review basics of testing vs. training MSE in the regression setting
@ Review why we cross-validate
@ See a couple of examples

28

Review - estimating f

28

Review - estimating f

First, we recall the notation and set the context.

Let's review a couple of slides extracted from
514-3.3-StatisticalLearning-ModelAccuracyEtc.pdf

28

https://github.com/Sondzus/StatsAnalytics/blob/master/514-3.3-StatisticalLearning-ModelAccuracyEtc.pdf

Notation and setup
@ Observe: a quantitative response Y, p different predictors,
X1, Xo,..., Xp.

@ Assume: some relationship between Y and X = (X1, X2, ..., Xp), which
can be written in the very general form

Y =f(X)+e

o f is some fixed but unknown function of X1, X,..., X,

€ is a random error term, which is independent of X and has mean zero.

In this formulation, f represents the *systematic* information that X
provides about Y.

[Regression setting]! £, Y = f(X) +¢, f, ¥ = f(X)

ISLR book figures.

/28

_ Revew-estimating /|
Assessing model accuracy

o Task: decide, for any given set of data, which method produces the
best results.
e Selecting the best approach can be one of the most challenging parts of
performing statistical learning in practice.
@ Need: measure how well predictions match observed data.
e — quantify the extent to which the predicted response value for a given
observation is close to the true response value for that observation.

Training Mean squared error (MSE)

train. MSE = 1 Z(Yi - ?(Xi))z

Lt

f(x;) is the prediction that f gives for the ith observation.

Real question:
What is the accuracy of the predictions that we obtain when we apply our
method to *previously* *unseen* test data?

23

-
Training vs. test data

Example 1

Goal: Develop an algorithm to predict a stock’s price based on previous stock
returns.

@ We can train the method using stock returns from the past 6 months.

@ But we don't really care how well our method predicts last week's stock price.

@ We instead care about how well it will predict tomorrow’s price or next
month’s price.

Example 2

Goal: predict diabetes risk for future patients based on their clinical measurements.

@ Clinical measurements (e.g. weight, blood pressure, height, age, family history
of disease) for a number of patients, + info whether each patient has diabetes.

@ Train a statistical learning method to predict risk of diabetes based on
clinical measurements.

@ No interest: whether method accurately predicts diabetes risk for patients
used to train the model, since we already know which of those patients have
diabetes.

4
B 20

_Review-estimating |
The test MSE

e (xo,y0) a previously unseen test observation

A

e Goal: f(x0) =~ yo?
Test MSE
test. MSE = Ave(yy — ?(XO))2

average squared prediction error for test observations (xo, yo).

How to select a method that minimizes MSE?
Scenario: test data available

@ Set of observations not used to train the statistical model.
o Evaluate test MSE, Ave(yo — f(x0))? on that set.

We'll partition the given sample into training & testing data sets.

28

Examples

10/28

_ bamis]
Training and testing MSE on simulated data

set.seed(1)

n = 30
x = sort(runif(n, -3, 3))
y = 2%x + 2%rnorm(n)

x0 = sort(runif(n, -3, 3))
yO = 2%x0 + 2*rnorm(n)

par (mfrow=c(1,2))

xlim = range(c(x,x0)); ylim = range(c(y,y0))

plot(x, y, xlim=xlim, ylim=ylim, main="Training data")
plot(x0, yO, xlim=x1lim, ylim=ylim, main="Test data")

11/28

Training data Test data

© - 4

°

°
< 4 i

° o
~ - ° -
o o8
o °
o
> © 2 o o °
o©° o °
o R | °
! %o o %
o
°
< i
! o o
o
® o 4 °
-3 -2 -1 0 1 -3 -2 -1 0

12/28

Training and test errors for a simple linear model
Im.1 = 1Im(y ~ x)

yhat.1l = predict(lm.1, data.frame(x=x))

train.err.1 = mean((y-yhat.1)72)

yOhat.1 = predict(Ilm.1, data.frame(x=x0))

test.err.1l = mean((yO-yOhat.1)~2)

par (mfrow=c(1,2))

plot(x, y, xlim=xlim, ylim=ylim, main="Training data")
lines(x, yhat.1l, col=2, lwd=2)

text (0, -6, label=paste("Training error:", round(train.err.1,:

plot(x0, yO, xlim=x1lim, ylim=ylim, main="Test data")

lines(x0, yOhat.l, col=3, lwd=2)
text (0, -6, label=paste("Test error:", round(test.err.1,3)))

13/28

Training data Test data
©
°
°
< 4
o
~ o og
o
o
> o - 2 o °
o
o
o 4 i
%
o
o
s i
)
6
© o .
? o - Test error: 3.535
o o
T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
x X0

14 /28

Cross-validation

15/28

Review: idea behind cross-validation

Cross-validation is essentially one of the resampling methods. > Estimate
the test error rate by holding out a subset of the training observations from

the fitting process, and then applying the statistical learning method to
those held out observations.

@ Remember:

e Testing error measures average error on measurements that were not
used to train the method.

e Available test data set = testing error easy to compute.

e Given a data set, how can we estimate test error? (Can't simply
simulate more data for testing.) We know training error won't work.

@ A tried-and-true technique: sample-splitting

Split the data set into two parts
First part: train the model /method
Second part: make predictions
Evaluate observed test error

16 /28

|
Sample-splitting on an example

dat=read.table("http://www.stat.cmu.edu/~ryantibs/statcomp/data/xy.
head(dat, 3)

X y
1 -2.908021 -7.298187
2 -2.713143 -3.105055
3 -2.439708 -2.855283

n = nrow(dat)

Split data in half, randomly
set.seed(0)

inds = sample(rep(1:2, length=n))
head(inds, 10)

[11 2211211221
table (inds)
inds

1 2
25 925 17/28

dat.tr
dat.te

dat[inds==1,] # Training data
dat [inds==2,] # Test data

plot(datx, daty, pch=c(21,19) [inds], main="Sample-splitting'
legend("topleft", legend=c("Training","Test"), pch=c(21,19))

Sample-splitting

o Training o
© - ® Test
. . o0
.
< - ®o
.
o
® o M
~ o > o
.
° - .
g © .
s o
° L
® °
‘T‘,
. © . o ° .
0o @
. ¢ o . °
T A .
o
° o
o |
f
°
.
.
T T T T T T
-3 -2 -1 0 1 2
dat$x

Train on the first half
Im.1 = 1lm(y ~ x, data=dat.tr)

Predict on the second half
pred.1 = predict(lm.1, data.frame(x=dat.te$x))

evaluate test error
test.err.l = mean((dat.te$y - pred.1)"2)

19/28

Plot the results

xx = seq(min(dat$x), max(dat$x), length=100)

plot(datx, daty, pch=c(21,19) [inds], main="Sample-splitting'
lines(xx, predict(lm.1, data.frame(x=xx)), col=2, lwd=2)
legend("topleft", legend=c("Training","Test"), pch=c(21,19))
text (0, -6, label=paste("Test error:", round(test.err.1,3)))

Sample-splitting

o Training
© - ® Test

20/

28

Why cross-validation?

Sample-splitting is simple, effective. But its it estimates the test error when
the model/method is trained on less data (say, roughly half as much)

An improvement over sample splitting: k-fold cross-validation

Split data into k parts or folds

Use all but one fold to train your model/method
Use the left out folds to make predictions

Rotate around the roles of folds, k rounds total
Compute squared error of all predictions, in the end

A common choice is k =5 or k = 10 (sometimes k = n, called
leave-one-out!)

21/28

Example

Split data in 5 parts, randomly
k=5

set.seed(0)

inds = sample(rep(1l:k, length=n))
head(inds, 10)

[1] 4441433533
table(inds)
inds

1 2 3 4 5
10 10 10 10 10

22/28

Now run cross-wvalidation: easiest with for loop, running over
which part to leave out

pred.mat = matrix(0, n, 2) # Empty matriz to store predictions
for (i in 1:k) {

cat(paste("Fold",i,"... "))
dat.tr = dat[inds!=i,] # Training data
dat.te = dat[inds==i,] # Test data

Train our models
Im.1.minus.i = 1lm(y ~ x, data=dat.tr)

Record predictions
pred.mat[inds==i,1] = predict(lm.l.minus.i,data.frame(x=dat.te$x)

}

Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...

23 /28

Compute cross-validation error
cv.errs = colMeans((pred.mat - dat$y) 2)

24 /28

. # Plot the results

par (mfrow=c(1,2))

xx = seq(min(dat$x), max(dat$x), length=100)
plot(datx, daty, pch=20, col=inds+1, main="Cross-validation")

lines(xx, predict(lm.1, data.frame(x=xx)), # Note: model trained on FULL data!

lwd=2, 1lty=2)

legend("topleft", legend=paste("Fold",1:k), pch=20, col=2:(k+1))
text (0, -6, label=paste("CV error:", round(cv.errs[1],3)))

dat$y

Cross-validation

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

CV error: 3.471

25/28

Now we wvisualize the different models trained,
one for each CV fold
for (i in 1:k) {

dat.tr = dat[inds!=i,] # Training data

dat.te = dat[inds==i,] # Test data

Train our models
Im.1.minus.i = 1lm(y ~ x, data=dat.tr)

Plot fitted models

cols = c("red","gray")

plot(datx, daty, pch=20, col=cols[(inds!=i)+1],
main=paste("Fold",i))

lines(xx, predict(lm.1.minus.i, data.frame(x=xx)), lwd=2, 1lty=2)

legend("topleft", legend=c(paste("Fold",i),"Other folds"),

pch=20, col=cols)

text (0, -6, label=paste("Fold",i,"error:",
round (mean((dat.te$y - pred.mat[inds==i,1])72),3)))

}

26 /28

datsy

datsy

6

Fold 1 Fold 2 Fold 3
|« For - Fold 3 .
Other folds . Other folds S
Fold 1 eror: 5220 Fold 2 eror: 3014 @47 Fold 3 ermor: 3036
7 T —
s 2 a0 1 40 3 2 a1 o 1 2
darsx darsc darsx
Fold 4 Fold 5
- = P

27

28

License

This document is created for ITMD/ITMS/STAT 514, Spring 2021, at
lllinois Tech. While the course materials are generally not to be distributed
outside the course without permission of the instructor, all materials posted
on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Contents of this lecture is based on the chapter 3 of the textbook Gareth
James, Daniela Witten, Trevor Hastie and Robert Tibshirani, " An
Introduction to Statistical Learning: with Applications in R’.

The simulated test/train data example is taken from Prof. Ryan Tibshirani's
statistical computing course notes.

28 /28

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Review - estimating f
	Examples
	Cross-validation

