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Note that u counts the number of each type of transition that occurred in
the sequences X1, X2, . . . , Xn.

For i.i.d. samples, we typically observe many replicates from the same
underlying model. When we use a time series or spatial model, the usual
way data arrives is as a single sample from that model, whose length or size
might not be a priori specified. For these models to be useful in practice,
we need them to be specified with a not very large set of parameters, so
that as the data grows (i.e., as the sequence gets longer) we have a hope of
being able to estimate the parameters. Of course, it might be the situation
that for a time-series or spatial model we have not just one sample, but
i.i.d. data. For instance, in Chapter 1 during our discussion of the maximum
likelihood estimation in a very short Markov chain, we analyzed the case
where we received many data sets of the chain of length 3, where each was
an i.i.d. sample from the same underlying distribution.

5.3. Parameter Estimation

Given a parametric statistical model and some data, a typical problem in
statistics is to estimate some of, or all of, the parameters of the model based
on the data. At this point we do not necessarily assume that the model
accurately models the data. The problem of testing whether or not a model
actually fits the data is the subject of the next section, on hypothesis testing.

Ideally, we would like a procedure which, as more and more data arrives,
if the underlying distribution that generated the data comes from the model,
the parameter estimate converges to the true underlying parameter. Such
an estimator is called a consistent estimator.

Definition 5.3.1. Let MΘ be a parametric statistical model with parame-
ter space Θ. A parameter of a statistical model is a function s : Θ → R. An
estimator of s is a function from the data space D to R, ŝ : D → R. The
estimator ŝ is consistent if ŝ −→p s as the sample size tends to infinity.

Among the simplest examples of estimators are the plug-in estimators.
As the name suggests, a plug-in estimator is obtained by plugging in values
obtained from the data to estimate parameters.

Example 5.3.2. As a simple example, consider the case of a binomial ran-
dom variable, with r + 1 states, 0, 1, . . . , r. The model consists of all distri-
butions of the form{(

θr,

(
r

1

)
θr−1(1 − θ), . . . , (1 − θ)r

)
: θ ∈ [0, 1]

}
.

Under i.i.d. sampling, data consists of n repeated draws X(1), . . . , X(n) from
an underlying distribution pθ in this model. The data is summarized by a
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5.3. Parameter Estimation 105

vector of counts u = (u0, . . . , ur), where ui = #{j : X(j) = i}. We would like
to estimate the parameter θ from the data of counts u. The value pθ(0) = θr,
hence, if we had a consistent estimator of pθ(0), we could obtain a plug-in
estimate for θ by extracting the rth root. For example, the formula

r

√√√√ 1

n

n∑

i=1

1x=0(X(i)) = r

√
u0

n

gives a consistent plug-in estimator of the parameter θ.

Intuitively, the plug-in estimator from Example 5.3.2 is unlikely to be a
very useful estimator, since it only uses very little information from the data
to obtain an estimate of the parameter θ. When choosing a consistent plug-
in estimator, we would generally like to use one whose variance rapidly tends
to zero as n → ∞. The estimator from Example 5.3.2 has high variance and
so is an inefficient estimator of the parameter θ.

Another natural choice for an estimator is a method of moments esti-
mator. The idea of the method of moments is to choose the probability
distribution in the model whose moments match the empirical moments of
the data.

Definition 5.3.3. Given a random vector X ∈ Rm and an integer vector
α ∈ Nm, the αth moment is

µα = E[Xα1
1 · · · Xαm

m ].

Given i.i.d. data X(1), . . . , X(n), their αth empirical moment is the estimate

µ̂α =
1

n

m∑

i=1

(X(i)
1 )α1 · · · (X(i)

m )αm .

So in method of moments estimation, we find formulas for some of the
moments of the random vector X ∼ pθ ∈ MΘ in terms of the parameter
vector θ. If we calculate enough such moments, we can find a probability
distribution in the model whose moments match the empirical moments. For
many statistical models, formulas for the moments in terms of the parame-
ters are given by polynomial or rational formulas in terms of the parameters.
So finding the method of moments estimator will turn into the problem of
solving a system of polynomial equations.

Example 5.3.4 (Binomial random variable). Consider the example of the
model of a binomial random variable from Exercise 5.3.2. Given a binomial
random variable X ∼ Bin(θ, r), the first moment E[X] = rθ. The empirical
first moment of X(1), . . . , X(n) is the sample mean X̄. Hence the method of
moments estimate for θ in the binomial model is

θ̂ = 1
r X̄.
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106 5. Statistics Primer

The method of moments estimators can often lead to interesting alge-
braic problems [AFS16]. One potential drawback to the method of mo-
ments estimators is that the empirical higher moments tend to have high
variability, so there can be a lot of noise in the estimates.

Among the many possible estimators of a parameter, one of the most
frequently used is the maximum likelihood estimator (MLE). The MLE is
one of the most commonly used estimators in practice, both for its intuitive
appeal and for useful theoretical properties associated with it. In particu-
lar, it is usually a consistent estimator of the parameters and, with certain
smoothness assumptions on the model, it is asymptotically normally dis-
tributed. We will return to these properties in Chapter 7.

Definition 5.3.5. Let D be data from some model with parameter space
Θ. The likelihood function

L(θ | D) := pθ(D)

in the case of discrete data and

L(θ | D) := fθ(D)

in the case of continuous data. Here pθ(D) is the probability of observing
the data given the parameter θ in the discrete case, and fθ(D) is the den-
sity function evaluated at the data in the continuous case. The maximum
likelihood estimate (MLE) θ̂ is the maximizer of the likelihood function:

θ̂ = arg max
θ∈Θ

L(θ | D).

Note that we consider the likelihood function as a function of θ with the
data D fixed. This contrasts the interpretation of the probability distribu-
tion where the parameter is considered fixed and the random variable is the
unknown (random) quantity.

In the case of i.i.d. sampling, so D = X(1), . . . , X(n), the likelihood
function factorizes as

L(θ | D) = L(θ | X(1), . . . , X(n)) =
n∏

i=1

L(θ | X(i)).

In the case of discrete data, this likelihood function is thus only a function
of the vector of counts u, so that

L(θ | X(1), . . . , X(n)) =
∏

j

pθ(j)
uj .
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5.3. Parameter Estimation 107

In the common setting in which we treat the vector of counts itself as the
data, we need to multiply this quantity by an appropriate multinomial co-
efficient

L(θ | u) =

(
n

u

)∏

j

pθ(j)
uj ,

which does not change the maximum likelihood estimate but will change the
value of the likelihood function when evaluated at the maximizer.

It is common to replace the likelihood function with the log-likelihood
function, which is defined as

#(θ | D) = log L(θ | D).

In the case of i.i.d. data, this has the advantage of turning a product into
a sum. Since the logarithm is a monotone function both the likelihood and
log-likelihood have the same maximizer, which is the maximum likelihood
estimate.

Example 5.3.6 (Maximum likelihood of a binomial random variable). Con-
sider the model of a binomial random variable with r trials. The probability
pθ(i) =

(r
i

)
θi(1 − θ)r−i. Given a vector of counts u, the log-likelihood func-

tion is

#(θ, u) = C +
r∑

i=0

ui log(θi(1 − θ)r−i)

= C +
r∑

i=0

(iui log θ + (r − i)ui log(1 − θ)) ,

where C is a constant involving logarithms of binomial coefficients but does
not depend on the parameter θ. To calculate the maximum likelihood esti-
mate, we differentiate the log-likelihood function with respect to θ and set
it equal to zero, arriving at:

∑r
i=0 iui

θ
−

∑r
i=0(r − i)ui

1 − θ
= 0.

Hence, the maximum likelihood estimator, θ̂, is given by

θ̂ =

∑r
i=0 iui

rn
.

Note that 1
n

∑r
i=0 iui is the sample mean X̄, so the maximum likelihood

estimate of θ is the same as the method of moments estimate of θ.

The gradient of the log-likelihood function is called the score function.
Since the gradient of a function is zero at a global maximum of a differ-
entiable function, the equations obtained by setting the score function to
zero are called the score equations or the critical equations. In many cases,
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108 5. Statistics Primer

these equations are algebraic and the algebraic nature of the equations will
be explored in later chapters.

For some of the most standard statistical models, there are well-known
closed formulas for the maximum likelihood estimates of parameters.

Proposition 5.3.7. For a multivariate normal random variable, the maxi-
mum likelihood estimates for the mean and covariance matrix are

µ̂ =
1

n

n∑

i=1

X(i), Σ̂ =
1

n
(X(i) − µ̂)(X(i) − µ̂)T .

Proof. The log-likelihood function has the form

log(µ,Σ | D) = −1

2

n∑

i=1

(
m log(2π) + log |Σ| + (X(i) − µ)TΣ−1(X(i) − µ)

)
.

The trace trick is useful for rewriting this log-likelihood as

log(µ,Σ | D)

= −1

2

(
nm log(2π) + n log |Σ| + tr(

n∑

i=1

((X(i) − µ)(X(i) − µ)T )Σ−1)

)
.

Differentiating with respect to µ and setting equal to zero yields the
equation

−1

2

n∑

i=1

Σ−1(X(i) − µ) = 0.

From this we deduce that µ̂ = 1
n

∑n
i=1 X(i), the sample mean.

To find the maximum likelihood estimate for the covariance matrix we
substitute K = Σ−1 and differentiate the log-likelihood with respect to an
entry of K. One makes use of the classical adjoint formula for the inverse
of a matrix to see that

∂

∂kij
log |K| = (1 + δij)σij ,

where δij is the Dirac delta function. Similarly,

∂

∂kij
tr(

n∑

i=1

((X(i) − µ)(X(i) − µ)T )K) = n(1 + δij)sij ,

where S = 1
n

∑n
i=1((X

(i) − µ)(X(i) − µ)T ) is the sample covariance matrix.
Putting these pieces together with our solution that the maximum likelihood
estimate of µ is µ̂ gives that Σ̂ = 1

n(X(i) − µ̂)(X(i) − µ̂)T . !
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5.4. Hypothesis Testing 109

Proposition 5.3.8. Let M1⊥⊥2 be the model of independence of two discrete
random variables, with r1 and r2 states respectively. Let u ∈ Nr1×r2 be the
table of counts for this model obtained from i.i.d. samples from the model.
Let ui1+ =

∑
i2

ui1i2 and u+i2 =
∑

i1
ui1i2 be the table marginals, and n =∑

i1,i2
ui1i2 the sample size. Then the maximum likelihood estimate for a

distribution p ∈ M1⊥⊥2 given the data u is

p̂i1i2 =
ui1+u+i2

n2
.

Proof. A distribution p ∈ ∆R belongs to the independence model if and
only if we can write pi1i2 = αi1βi2 for some α ∈ ∆r1−1 and β ∈ ∆r2−1. We
solve the likelihood equations in terms of α and β and use them to find p̂.
Given a table of counts u, the log-likelihood function for a discrete random
variable has the form

#(α,β | u) =
∑

i1,i2∈R
ui1i2 log pi1i2

=
∑

i1,i2∈R
ui1i2 logαi1βi2

=
∑

i1∈[r1]

ui1+ logαi1 +
∑

i2∈[r2]

u+i2 log βi2 .

From the last line, we see that we have two separate optimization prob-
lems that are independent of each other: maximizing with respect to α and
maximizing with respect to β. Remembering that αr1 = 1 −

∑r1−1
i1=1 αi1 and

computing partial derivatives to optimize shows that α̂i1 =
ui1+

n . Similarly,

β̂i2 =
u+i2

n . !

Unlike the three preceding examples, most statistical models do not
possess closed form expressions for their maximum likelihood estimates. The
algebraic geometry of solving the critical equations will be discussed in later
chapters, as will some numerical hill-climbing methods for approximating
solutions.

5.4. Hypothesis Testing

A hypothesis test is a procedure given data for deciding whether or not a
statistical hypothesis might be true. Typically, statistical hypotheses are
phrased in terms of statistical models: for example, does the unknown dis-
tribution, about which we have collected i.i.d. samples, belong to a given
model, or not. Note that statisticians are conservative so we rarely say that
we accept the null hypothesis after performing a hypothesis test, only that
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