Homework 1

Math/Stat 561, Algebraic and Geometric Methods in Statistics

Due 18 Jan 2023.

- (a) Verify the two polynomial equations in Example 1.1.2 of the textbook (Three-step Markov chain) which we discussed in class. That is, fill in all the missing details to verify the equations are a correct characterization of the Markov chain model.
 - (b) Does the point $\hat{p} = \left(\frac{20}{78}, \frac{4}{78}, \frac{18}{91}, \frac{3}{91}, \frac{10}{78}, \frac{2}{78}, \frac{24}{91}, \frac{4}{91}\right)$ lie in the 3-step Markov chain model? (This probability distribution shows up on page 7 of the textbook.)
- 2. Let $M \in \mathbb{R}^{m \times n}$ be an $m \times n$ -matrix with entries in \mathbb{R} . Prove that the following statements are equivalent:
 - (a) The rank of M is at most one.
 - (b) There exist vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that $M = uv^T$.
 - (c) All 2×2 -minors of M are zero.

Advanced version: Instead of proving the above, work on the more general formulation. What analogous statement can you make for 3dimensional tensors? what is a 'rank' of a tensor?

3. How does the mathematics of problem 2 relate to the model of independence of two discrete random variables?

Advanced version: Same question for three discrete random variables.

- 4. Which points in \mathbb{R}^2 satisfy
 - (a) the equation $p_1^2 + p_2^2 1 = 0$?
 - (b) the equation $p_1 p_2^2 = 0$?
 - (c) both equations $p_1 p_2^2 = 0$ and $p_1^2 + p_2^2 1 = 0$?

These solution sets of systems of polynomial equations are *algebraic vari*eties. If S is a set of polynomials, then then the variety defined by S is denoted V(S).