Math 561 Assignment 2*

SP, using Miles' template!

Due date: 10 Feb 2023 - extended to 13 Feb 2023.

Submit solutions to at least 4 problems out of problems 1-5, and at least one of 6\&7.

1. Let

$$
P^{\left(X_{3}=0\right)}:=\left(\begin{array}{cc}
0.05 & 0.15 \\
0.075 & 0.225
\end{array}\right), P^{\left(X_{3}=1\right)}:=\left(\begin{array}{ll}
0.125 & 0.125 \\
0.125 & 0.125
\end{array}\right)
$$

Consider three binary random variables, X_{1}, X_{2}, X_{3} each taking values in the set $\{0,1\}$ with joint probabilities $P\left(X_{1}=i, X_{2}=j, X_{3}=0\right)=P_{i, j}^{\left(X_{3}=0\right)}$ and $P\left(X_{1}=i, X_{2}=j, X_{3}=1\right)=P_{i, j}^{\left(X_{3}=1\right)}$.
(a) Find the marginal distribution $P_{X_{1}}$ of X_{1} (Recall that in the discrete case, integration is substituted by summation.)
(b) Find the conditional distribution $P_{X_{2}, X_{3} \mid X_{1}}$ of $\left(X_{2}, X_{3}\right)$ given X_{1}.
(c) Is X_{2} conditionally independent of X_{3} given X_{1} ?
(d) Is X_{1} conditionally independent of X_{2} given X_{3} ?
2. Consider four binary random variables $X_{1}, X_{2}, X_{3}, X_{4}$ and the collection $\mathcal{C}=\left\{X_{1} \Perp\left(X_{3}, X_{4}\right) \mid X_{2}\right\}$. Write down the corresponding conditional independence ideal $I_{\mathcal{C}}$. Hint: The polynomials in the CI ideal are 2×2 minors of some matrices. Can you figure out which matrices?
3. Exercise 4.7 from the book. For four binary random variables, consider the conditional indpendence model $C=\{1 \Perp 3|(2,4), 2 \Perp 4|(1,3)\}$. Compute the primary decomposition of $I_{\mathcal{C}}$ and describe the components.

Advanced version of this problem (i.e., you may choose this instead). Exercise 4.10. Consider the marginal indepndence model for four binary random variables $C=\{1 \Perp 2,2 \Perp 3,3 \Perp 4,1 \Perp 4\}$.
(a) Compute the primary decomposition of $I_{\mathcal{C}}$.
(b) Show that there is exactly one component of $V\left(I_{\mathcal{C}}\right)$ that intersects the probability simplex.
(c) Give a parametrization of that componenet.
4. Exercise 4.12. Consider the Gaussian conditional independence model $C=\{1 \Perp 2|3,1 \Perp 3| 4,1 \Perp 4 \mid 2\}$. Compute the primary decomposition of $J_{\mathcal{C}}$ and use this to determine what, if any, further conditional independence statements are implied.
5. Coding Problem! Write an R (preferred) or Python (acceptable) script to generate the discrete and/or Gaussian conditional independence ideal from (1) one CI statement and (2) a list of CI statemens. The output should be as the output of Macaulay2 shown in slides in Lectures 4 and 5 .
6. Exercise 6.2. Consider the vector $h=(1,1,1,2,2,2)$ and the matrix $A=\left[\begin{array}{llllll}2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 & 1 & 1\end{array}\right]$.
(1) Compute generators for the toric ideals I_{A} and $I_{A, h}$.
(2) What familiar statistical model is the discrete exponential family $\mathcal{M}_{A, h}$?

[^0]7. Exercise 6.3. Consider the monomial parametrization
$$
p_{i j k}=\alpha_{i j} \beta_{i k} \gamma_{j k}
$$
for $i \in\left[r_{1}\right], j \in\left[r_{2}\right], k \in\left[r_{3}\right]$. Describe the matrix A associated to this monomial parametrization. How does A act as a linear transformation on 3 -way arrays (3 -dimensional tables)? Compute the vanishing ideal I_{A} for $r_{1}=r_{2}=r_{3}=3$.
[Hint: the easiest way to use a computer to get the ideal is use the FourTiTwo package in Macaulay2, online, as shown in the lecture.]

[^0]: *Algebraic and Geometric Methods in Statistics, Spring 2023

