Math 561 Assignment 6

Algebraic and Geometric Methods in Statistics, Spring 2023

Due date: 27 Apr 2023.

Instructions Follow your notes from lectures 21 and 22. (Or the corresponding book sections, as listed in the course lecture schedule.) There are $\mathbf{3}$ problems, and an extra credit task at the end.

1. A mixed graph model

Consider the following hidden variable DAG where the hidden confounder influencing random variables X_{2} and X_{4} has been replaced by the bidirected edge $2 \leftrightarrow 4$. [This procedure is similar to what we did when we introduced the instrumental variable model for hidden variable DAGs.]

In this problem, you will derive the structural equation model for this mixed graph.

- Complete the linear equations:

$$
\begin{gathered}
X_{1}=\lambda_{01}+\epsilon_{1}, \\
X_{2}=\ldots \\
X_{3}=\ldots \\
X_{4}=\ldots
\end{gathered}
$$

- Write the error covariance matrix Ω. For which pairs i and j is $\omega_{i j}=0$?
- Write the matrices $I_{4 \times 4}-\Lambda$ and $\left(I_{4 \times 4}-\Lambda\right)^{-1}$.
- Compute all entries of the matrix $\Sigma=\left[\begin{array}{ccc}\sigma_{11} & \ldots & \sigma_{14} \\ \cdots & & \\ & & \sigma_{44}\end{array}\right]$ in two ways:
a. By comptuing the matrix-equation form of the structrual equation model
b. By computing the treks between nodes in the mixed graph and verifying that each term in the summation for each $\sigma_{i j}$ is indeed obtained by enumerating treks in the graph.
- Draw a picture of all the treks between nodes 2 and 4 in the graph.

2. Identifiability

2.a) Consider the 4 -node graph in this figure.

The missing bidirected edges give us the followwing equations:

$$
\begin{aligned}
& \omega_{32}=\sigma_{23}-\lambda_{13} \sigma_{12}-\lambda_{12}\left(\sigma_{13}-\lambda_{13} \sigma_{11}\right)=0 \\
& \omega_{42}=\sigma_{24}-\lambda_{14} \sigma_{12}-\lambda_{12}\left(\sigma_{14}-\lambda_{14} \sigma_{11}\right)=0 \\
& \omega_{43}=\sigma_{34}-\lambda_{14} \sigma_{13}-\lambda_{13}\left(\sigma_{14}-\lambda_{14} \sigma_{11}\right)=0
\end{aligned}
$$

You will now show that the model on this graph is not (linearly) identifiable as we cannot express any subset of $\lambda_{12}, \lambda_{13}, \lambda_{14}$ linearly in terms of Σ :

- Solve the first two equations for λ_{13} and λ_{14}. You should get fractions for both.
- Substitute these into the third equation. You should obtain a quadratic in the indeterminate λ_{12}.
- How many solutions does the quadratic equation have? (Check the discriminant.)
2.b) Prove that if the graph G on n nodes has more than $\binom{n}{2}$ edges, then the model is not (generically) identifiable.

Hint: simply count the number of equations and the number of unknowns. Each missing bidirected edge gives an equation in $\sigma_{u v}$ and $\lambda_{u v}$ which says $\omega_{u v}=0$. Each directed edge corresponds to which unknown? Now, count them.

3. Polynomials

Explore the polynomials that describe this model using a computer (since we haven't talked about doing this by hand!)

Run the following code in Macaulay2:

```
needsPackage "GraphicalModels";
G = mixedGraph(digraph {{1,{2,3}},{2,{3}},{3,{4}}}, bigraph {{2,4}});
R = gaussianRing G;
trekIdeal(R,G)
gaussianVanishingIdeal R
```

- Why did trekIdeal (R, G) return zero? This seems to say that there are no trek-separation relations in the graph!
- Study the polynomial that is the output of gaussianVanishingIdeal R. Does it look like a determinant? If yes, of what matrix? If no, what does this mean about the model?

[3 - extra credit]

For the polynomial in the last question, consider the following subgraph of the graph above:

In this subgraph, verify that there is no trek from node 1 to node 4 . Hence, the $(1,4)$ entry of a certain matrix is zero.

- Which matrix?
- Clear the denominator to derive the polynomial that is the output of gaussianVanishingIdeal R.

