week 6 day 2

"Exact testing for model/data fit for log-linear models" "Part One."
"Algebraic \& Geometric Methods in Statistics"

Sonja Petrović
Created for Math/Stat 561

Feb 15, 2023.

Agenda

- Chapter 9 from our textbook: Fisher's exact test
- Part of chapter 8 , as we may need the cone of sufficient statistics.

Goals

- Understand hypotheses testing for model/data fit
- What is a p-value for a goodness-of-fit test?
- Asymptotic vs. exact tests
- Fisher's test and example
- General goodness of fit test for log-linear models
- Open problems and relation to projects!

A simple search: Chicago data science salary data

(o) Chicago, IL
$\equiv \quad$ Data Scientist Salaries Chicago, IL \sim
Overview Salaries Interviews Insights Career Path

How much does a Data Scientist make in Chicago, IL?

[^0]Total Pay Trajec
For Data Scientist in (

- $\$ 134,267 / \mathrm{yr}$

Data Scientist
\$176,030/yr
Senior Data Scie
\$178,448/yr
Lead Data Scient

See Full Career Path
Download as data table
Related Job Titl
For Data Scientist in (

Some related job title:

At the heart of statistical reasoning

- Given: data, find out if it is usual/expected? surprising/outlier? quantify??

At the heart of statistical reasoning

- Given: data, find out if it is usual/expected? surprising/outlier? quantify??
- Do all genders get fair salary in Chicago for data science jobs?

Obtain some salary data

Break data down by gender

Hope salary independent of gender

At the heart of statistical reasoning

- Given: data, find out if it is usual/expected? surprising/outlier? quantify??
- Do all genders get fair salary in Chicago for data science jobs?
Obtain some
salary data
Break data down by gender

Hope salary independent of gender

- We expect a certain 'shape' of the data. A certain. . . distribution! YOUR everyday intuition \mapsto formal framework.

	M	F	T / Nb	totals
$\leq 135 \mathrm{~K}$	$?$	$?$	$?$	$\mathbf{1 3}$
$>135 \mathrm{~K}$	$?$	$?$	$?$	$\mathbf{1 3}$
totals	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{2 6}$

Formal reasoning with data: independence example

- Modeling: Construct a statistical model for independence.
- Question: Does the model fit the observed set of gender vs. salary ranges?
(Can it adequately explain how the salary data was generated?)
- Process:

What are tests of goodness of fit?

What familiar data structure is this:

	gender		
range	M	F	Nb
$<=135 \mathrm{~K}$	8	1	4
$>135 \mathrm{~K}$	2	9	2

The research hypothesis can be made about a model: for example, since it looks like there's an association between lower salary bracket and gender, maybe the data is enough evidence to refute:

What are tests of goodness of fit?

What familiar data structure is this:

	gender		
range	M	F	Nb
$<=135 \mathrm{~K}$	8	1	4
$>135 \mathrm{~K}$	2	9	2

The research hypothesis can be made about a model: for example, since it looks like there's an association between lower salary bracket and gender, maybe the data is enough evidence to refute: H_{0} : gender and salary bracket are indepenent.

Testing model fit?
To test for significance, we just need to pass our 2×3 table into the appropriate function in some statistical software.

Tests of independence for $j \times k$ tables

```
salaries <- as.table(rbind(c(8, 1, 4),
                                c(2, 9, 2)))
dimnames(salaries) <- list(
    range = c("<=135K","> 135K"),
    gender = c(" M"," F","Nb")
    )
salaries # display the data
\begin{tabular}{cccr} 
& \multicolumn{3}{c}{ gender } \\
range & \(M\) & \(F\) & Nb \\
\(<=135 \mathrm{~K}\) & 8 & 1 & 4 \\
\(>135 \mathrm{~K}\) & 2 & 9 & 2
\end{tabular}
```

We may be interested in asking whether all genders have similar salary allocations.

The answer will be easier to guess at if we convert the rows to show proportions instead of counts. Here's one way of doing this.

```
salaries.prop <- prop.table(salaries, 1)
salaries.prop
```

gender

range	M	F	Nb
$<=135 \mathrm{~K}$	0.61538462	0.07692308	0.30769231
$>$	135 K	0.15384615	0.69230769

By looking at the table we see that Female seem to be more likely to be in the higher salary range.

We still want to know if this difference is significant. To assess this we can use the chi-squared test (on the counts table, not the proportions table!).
chisq.test(salaries)
Warning in chisq.test(salaries): Chi-squared approximation may be incorrect

Pearson's Chi-squared test
data: salaries
X-squared $=10.667, \mathrm{df}=2, \mathrm{p}$-value $=0.004828$

We still want to know if this difference is significant. To assess this we can use the chi-squared test (on the counts table, not the proportions table!). chisq.test(salaries)

Warning in chisq.test(salaries): Chi-squared approximation may be incorrect

Pearson's Chi-squared test
data: salaries
X-squared $=10.667, \mathrm{df}=2$, p -value $=0.004828$
fisher.test(salaries,alternative="greater")

Fisher's Exact Test for Count Data
data: salaries
p-value $=0.004$
alternative hypothesis: greater

Questions:

- What are the chi-squared (and Fisher's) tests doing?
- How much does this generalize to other models?

In order to answer these questions, let us compute by hand the bits and pieces that are necessary to undrestand the mechanics of these tests.

	gender			gender		
range	M	F	Nb	range	M	F Nb
<=135K	0.61538462	0.07692308	0.30769231	<=135K	8	14
> 135K	0.15384615	0.69230769	0.15384615	> 135K	2	92
Observed	probability ta	ble $p_{\text {obs }}$.		Table of cour	un	

- Question: What is the expected probability table? And how about the expected u ?

	gender			gender		
range	M	F	Nb	range	M	F Nb
<=135K	0.61538462	0.07692308	0.30769231	<=135K	8	14
> 135K	0.15384615	0.69230769	0.15384615	> 135K	2	92
Observed	probability ta	ble $p_{\text {obs }}$.		Table of cour	unt	

- Question: What is the expected probability table? And how about the expected u ?
\ldots under the model of gender \Perp party affiliation?

	gender			gender			
range	M	F	Nb	range	M	F	Vb
<=135K	0.61538462	0.07692308	0.30769231	<=135K	8	1	4
> 135K	0.15384615	0.69230769	0.15384615	> 135K	2	9	2
Observed	probability ta	le $p_{\text {obs }}$.		Table of c	unt		

- Question: What is the expected probability table? And how about the expected u ?
... under the model of gender \Perp party affiliation?
- In other words: compute the MLE of $p_{i j}$ for the parameter table p, and then the table of counts u.

This is in-class work now.

	gender			gender			
range	M	F	Nb	range	M	F	Nb
<=135K	0.61538462	0.07692308	0.30769231	<=135K	8	1	4
> 135K	0.15384615	0.69230769	0.15384615	> 135K	2	9	2
Observed	probability ta	le $p_{\text {obs }}$.		Table of coun	unt		

- Question: What is the expected probability table? And how about the expected u ?
... under the model of gender \Perp party affiliation?
- In other words: compute the MLE of $p_{i j}$ for the parameter table p, and then the table of counts u.

This is in-class work now.

Answer: the expected u under the model of independence is: gender

range	M	F	Nb
$<=135 \mathrm{~K}$	5	5	3
$>135 \mathrm{~K}$	5	5	3

- How "far away" is the observed table u from the expected table \hat{u} ?
- Whenever we say the word expected we mean under whatever the model is we are considering; in this case, independence of rows and columns.

Pearson's chi-squared goodness-of-fit statistic

$$
X^{2}(u)=\sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(u_{i j}-\hat{u}_{i j}\right)^{2}}{\hat{u}_{i j}}
$$

- Question: What is the value of this statistic for the observed table?

gender				gender			
range	M	F	Nb	range	M	F	Nb
$<=135 \mathrm{~K}$	5	5	3	$<=135 \mathrm{~K}$	8	1	4
$>135 \mathrm{~K}$	5	5	3	$>135 \mathrm{~K}$	2	9	2
Expected table \hat{u}.		Observed table u.					

This is in-class work now.

- How "far away" is the observed table u from the expected table \hat{u} ?
- Whenever we say the word expected we mean under whatever the model is we are considering; in this case, independence of rows and columns.

Pearson's chi-squared goodness-of-fit statistic

$$
X^{2}(u)=\sum_{i=1}^{2} \sum_{j=1}^{3} \frac{\left(u_{i j}-\hat{u}_{i j}\right)^{2}}{\hat{u}_{i j}}
$$

- Question: What is the value of this statistic for the observed table?

gender				gender			
range	M	F	Nb	range	M	F	Nb
$<=135 \mathrm{~K}$	5	5	3	$<=135 \mathrm{~K}$	8	1	4
$>135 \mathrm{~K}$	5	5	3	$>135 \mathrm{~K}$	2	9	2
Expected table \hat{u}.		Observed table u.					

This is in-class work now.

Answer: $X^{2}=10.6666667$.

What are these tests computing?

Asymptotic test (chi-square)
In an asymptotic goodness-of-fit test, one uses the fact that X^{2} has a chi-squared distribution (with known degrees of freedom) to assess whether the observed X^{2} value is extreme or not.

Exact test (Fisher)
In an exact goodness-of-fit test, one uses the exact distribution of the statistic...

What are these tests computing?

Asymptotic test (chi-square)
In an asymptotic goodness-of-fit test, one uses the fact that X^{2} has a chi-squared distribution (with known degrees of freedom) to assess whether the observed X^{2} value is extreme or not.

Exact test (Fisher)
In an exact goodness-of-fit test, one uses the exact distribution of the statistic. which is what?

	gender			
range	M	F	Nb	
$<=135 \mathrm{~K}$	8	1	4	
$>135 \mathrm{~K}$	2	9	2	

	gender			
range	M	F	Nb	
$<=135 \mathrm{~K}$	9	0	4	
$>135 \mathrm{~K}$	1	10	2	
gender				
range	M	F	Nb	
$<=135 \mathrm{~K}$	9	1	3	
$>135 \mathrm{~K}$	1	9	3	

Conclusion? Evidence in the data? Significance?

Definition [p-value]
Refer to Chapter 5. Discuss in lecture / board.

- Read the beginning of Chapter 9. Section 9.1: Conditional inference.
- We are conditioning on the row and column sums of the table.
- These are sufficient statistics for the independence model.
- This is a general strategy...

Summary of hypothesis testing

3 elements: hypotheses, test statistic, (rejection) decision rule .

- In practice, check assumptions to know which test to use (for example, which distribution to reference for a decision rule).
- For model/data fit, the null hypothesis is $H_{0}: \mathcal{M}$ fits the data:

Goodness of fit for a model \mathcal{M}
we are saying that there exists a parameter value $\theta_{\text {true }}$ such that $p_{\theta_{\text {true }}} \in \mathcal{M}$ that produced the observed data. We often take $\hat{\theta}_{M L E}$ as the best guess for the true value $\theta_{\text {true }}$ under the assumption that the model is correct.
"Is the model correct? does it fit my data?" is a question you should ask before using the model for analytics and drawing any conclusions.

- Sometimes model fit tests are done heuristically;
- Sometimes we have formal testing procedures.
- Next: we will learn how computational algebra (yes, polynomial ideals!) can be used for exact tests for models for large, sparse table data!

R Resources

chisq.test(salaries)

Warning in chisq.test(salaries): Chi-squared approximation may be incorrect

> Pearson's Chi-squared test
data: salaries
X-squared $=10.667, \mathrm{df}=2, \mathrm{p}$-value $=0.004828$
\#\# There is an option to "simulate p value" using Monte Carlo! chisq.test(salaries,simulate.p.value = TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
data: salaries
X-squared $=10.667, \mathrm{df}=\mathrm{NA}, \mathrm{p}$-value $=0.006997$

Extra reading: A smaller example, 2×2

\left.| mother.smokes | | | |
| ---: | :--- | :---: | :---: |
| birthwt.below. 2500 | no | | |
| no s | 86 | | |
| 44 | | | |
| yes | 29 | | |$\right) 30$

This is a 2×2 contingency table, a count u of cross-classified data.
The research hypothesis can be made about a model: for example, since it looks like there's a positive association between low birthweight and smoking status, maybe the data is enough evidence to refute:

Extra reading: A smaller example, 2×2

\left.| mother.smokes | | |
| ---: | :--- | :---: |
| birthwt.below. 2500 | no | |
| nos | | |
| no | 86 | |
| 44 | | |
| yes | 29 | |$\right) 30$

This is a 2×2 contingency table, a count u of cross-classified data.
The research hypothesis can be made about a model: for example, since it looks like there's a positive association between low birthweight and smoking status, maybe the data is enough evidence to refute: H_{0} : weight and smoking are independent.

Testing model fit?
To test for significance, we just need to pass our 2×2 table into the appropriate function in some statistical software.

Here's an example in R :
birthwt.fisher.test <- fisher.test(weight.smoke.tbl)
birthwt.fisher.test

Fisher's Exact Test for Count Data
data: weight.smoke.tbl
p-value $=0.03618$
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.0287803 .964904
sample estimates:
odds ratio
2.014137

Another way:
chisq.test(weight.smoke.tbl)

Pearson's Chi-squared test with Yates' continuity correct
data: weight.smoke.tbl
X-squared $=4.2359, ~ d f=1, p-v a l u e=0.03958$

- You get essentially the same answer by running the chi-squared test, but the output isn't as useful as Fisher's test.
- In particular, you're not getting an estimate or confidence interval for the odds ratio.
- This is why fisher.test() is preferred for testing 2×2 tables.

Resources \& License

- Quick summary notes about p-values that I wrote for Stat 514.
- Read about hypothesis tests for context of the model fitting tests in these lecture notes.
- This lesson from Penn State online offers a one-page summary of Fisher's exact test for 2×2 tables, as it was developed by Sir Fisher!
- Believe it or not, there is a great 2×2 example on Wikipedia, a page which actually contains a really good explanation for this one example.

This document is created for Math/Stat 561, Spring 2023.
All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

[^0]: The estimated total pay for a Data Scientist is $\$ 134,267$ per year in the Chicago, IL area, with an average salary of $\$ 110,139$

