week 7 day 1

"Exact testing for model/data fit for log-linear models"

"Part Two"

"Algebraic & Geometric Methods in Statistics"

Sonja Petrović Created for Math/Stat 561

Feb 20, 2023.

Agenda

- Chapter 9 from our textbook: Fisher's exact test
- Part of chapter 8, as we may need the cone of sufficient statistics.

Goals

- LAST LECTURE:
 - Understand hypotheses testing for model/data fit
- THIS LECTURE: we will work towards
 - What is a p-value for a goodness-of-fit test?
 - Asymptotic vs. exact tests
 - Fisher's test and example
- NEXT LECTURE:
 - General goodness of fit test for log-linear models
 - Open problems and relation to projects!

Recap

Exact test (Fisher)

In an ${\bf exact}$ goodness-of-fit test, one uses the exact distribution of the statistic. . .

Recap

Exact test (Fisher)

In an **exact** goodness-of-fit test, one uses the exact distribution of the statistic... which is **what**?

g	end	er		g	end	der	
range	M	F	Nb	range	М	F	Nb
<=135K	8	1	4	<=135K	9	0	4
> 135K	2	9	2	> 135K	1	10	2
				g	end	der	
				range	М	F	Nb
				<=135K	9	1	3
				> 135K	1	9	3

Conclusion? Evidence in the data? Significance?

Definition [p-value]

Refer to Chapter 5. Discuss in lecture / board.

- Read the beginning of Chapter 9. Section 9.1: Conditional inference.
 - We are conditioning on the row and column sums of the table.
 - These are sufficient statistics for the independence model.
 - This is a general strategy...

The general exact test for contingency tables [board lecture]

- Proposition 9.1.1. [stated without proof, but it's not difficult...]
- p.192 "A similar strategy is based on the likelihood ratio test, where we use the G statistic, instead of the X2 statistic."
- Look back to the example from Lecture 10:

Interpret: what are all the possible tables? What is the probability of any given table?

	М	F	T/Nb	totals
≤ 135K	?	?	?	13
> 135K	?	?	?	13
totals	10	10	6	26

Here's a cheat sheet:

Before we proceed with the Fisher test, we first introduce some notations. We represent the cells by the letters a, b, c and d, call the totals across rows and columns marginal totals, and represent the grand total by n. So the table now looks like this:

	Men	Women	Row Total
Studying	а	b	a + b
Non-studying	с	d	c + d
Column Total	a + c	b + d	a+b+c+d (=n)

Fisher showed that conditional on the margins of the table, *a* is distributed as a hypergeometric distribution with *a+c* draws from a population with *a+b* successes and *c+d* failures. The probability of obtaining such set of values is given by:

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{\binom{a+b}{b}\binom{c+d}{d}}{\binom{n}{b+d}} = \frac{(a+b)! \ (c+d)! \ (a+c)! \ (b+d)!}{a! \ b! \ c! \ d! \ n!}$$

where $\binom{n}{k}$ is the binomial coefficient and the symbol ! indicates the factorial operator. This can be seen as follows. If the marginal totals (i.e. a+b,c+d,a+c, and b+d) are known, only a single degree of freedom is left: the value e.g. of a suffices to deduce the other values. Now, p=p(a) is the probability that a elements are positive in a random selection (without replacement) of a+c elements from a larger set containing a elements in total out of which a+b are positive, which is precisely the definition of the hypergeometric distribution.

Figure 1: From Wikipedia:)

Resources & License

- Quick summary notes about p-values that I wrote for Stat 514.
- Read about hypothesis tests for context of the model fitting tests in these lecture notes.
- ullet This lesson from Penn State online offers a one-page summary of Fisher's exact test for 2 \times 2 tables, as it was developed by Sir Fisher!
- Believe it or not, there is a great 2×2 example on Wikipedia, a page which actually contains a really good explanation for this one example.

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.