week 7 day 2

"Exact testing for model/data fit for log-linear models" "Part three" "Algebraic & Geometric Methods in Statistics"

> Sonja Petrović Created for Math/Stat 561

> > Feb 22, 2023.

- Chapter 9 from our textbook: Fisher's exact test
- Part of chapter 8, as we may need the cone of sufficient statistics.

Goals

- LAST WEEK:
 - Understand hypotheses testing for model/data fit
- LAST LECTURE: we worked towards
 - What is a *p*-value for a goodness-of-fit test?
 - Asymptotic vs. exact tests
 - Fisher's test and example

• THIS LECTURE:

- General goodness of fit test for log-linear models
- Open problems and relation to projects!

Recap

Recap: definition of exact conditional tests

In an **exact** goodness-of-fit test, one uses the exact distribution of a GoF statistic... for example the X^2 statistic defined in lecture 10. The reference distribution is the *exact* distribution of that statistic on the set of tables with given fixed sufficient statistics (margins).

gender range M F Nb <=135K 8 1 4 > 135K 2 9 2				g	enc	ler	
range	М	F	Nb	range	М	F	Nb
<=135K	8	1	4	<=135K	9	0	4
> 135K	2	9	2	> 135K	1	10	2
				g	enc	ler	
				range	М	F	Nb
				<=135K	9	1	3
				> 135K	1	9	3

Conclusion? Evidence in the data? Significance?

Definition [p-value]

Define the *p*-value for the GoF statistic.

- Read the beginning of Chapter 9. Section 9.1: Conditional inference.
 - We are *conditioning* on the row and column sums of the table.
 - These are sufficient statistics for the independence model.
 - This is a general strategy...

Interpret: what are all the possible tables? What is the probability of any given table?

	М	F	T/Nb	totals
\leq 135K	?	?	?	13
> 135 K	?	?	?	13
totals	10	10	6	26

The general exact test for contingency tables [board lecture]

- Definition 9.1.3. fiber
- p194: Problem 9.1.6. understand the problem definition

Models with a design matrix

- X_1, \ldots, X_k discrete random variables, $X_i \in \{1, \ldots, d_i\}$
- u = a k-way contingency table $u \in \mathbb{Z}_{\geq 0}^{d_1 \times \cdots \times d_k}$ [Draw a table!] Flatten u to vector.

Log-linear model

Sufficient statistics = marginals of u: $P_{\theta}(U = u) = \exp\{\langle Au, \theta \rangle - \psi(\theta)\}$.

Example $X_1 \perp \!\!\!\perp X_2$

	1 0	1 0	· · · · · · ·	1 0	01	0 1	 	0 1		0 0	0 0	 	0 0	
1					· ·				· ·					
- 1					· ·				· ·	•				
1	0	0		0	0	0		0		1	1		1	
	1	0		0	1 0	0		0		1	0		0	$\cdot \begin{bmatrix} \vdots \\ u_{d_1 d_2} \end{bmatrix} = \begin{bmatrix} u_{1+} & \dots & u_{+d_2} \end{bmatrix}$
	: 0	:	·	:	:	: : 0	·	÷	:	:	:	·	: : 1	$(d_1+d_2) \times d_1d_2$

Main ingredients for MCMC for exact testing of model/data fit

- Markov bases and Metropolis-Hastings that is the start of Section 9.2.
 - include example 201-202 culminating with Proposition 9.2.10.
 - Iook out for Felix's talk in april!

include example. 8.2.2. nonexistent MLE!

Resources & License

- Quick summary notes about *p*-values that I wrote for Stat 514.
- Read about hypothesis tests for context of the model fitting tests in these lecture notes.
- This lesson from Penn State online offers a one-page summary of Fisher's exact test for 2 × 2 tables, as it was developed by Sir Fisher!
- Believe it or not, there is a great 2 × 2 example on Wikipedia, a page which actually contains a really good explanation for this one example.

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.