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Material

Chapter 13: Graphical models
We are following after Miles Bakenhus’ course project lecture on
sections 13.1 and 13.2.
We will review a couple of examples from the basics of graphical models
(think of the first st of these slides as your study worksheet in class).
We will then see a few more examples
Discuss the discrete distributions and connection to algebra&geometry.
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Examples

Genes:
three genes in
this example
A,B,C

Relationships:
A regulates C
B regulates C

BIOLOGY
genes
relationships

A

C

B

GRAPH
vertices
edges

P(A, B, C) =

P(A)P(B)P(C |A, B)

PROBABILISTIC
MODEL

random variables
statistical
dependencies
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Correlation vs causation

Genes regulated as X → Y → Z
Z and X are correlated, but do not interact directly

Figure 1: Source: K. Kubjas
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Separator

Poll:

Let G be a graph with nodes {1,2,3,4} and edges (1,2), (2,3), (2,4), (3,4).

Which of the following sets are separators for the nodes 1 and 4?
1 {2}
2 {3}
3 {2,3}
4 {1,2,3,4}

Answer
Correct answers: 1. and 3.
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Reminder: conditinoal independence definition

[board]
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Pairwise Markov property
Let G = (V, E) be an undirected graph.

Definition
The pairwise Markov property associated to G consists of all conditional
independence statements

Xu ⊥⊥ Xv |XV (G)\{u,v}, where (u, v) is not an edge
of G.

Question (example)
The pairwise Markov property associated to G below is:

1 {1 ⊥⊥ 3|(2, 4), 1 ⊥⊥ 4|(2, 3)}
2 {1 ⊥⊥ 3|2, 1 ⊥⊥ 4|2}
3 {1 ⊥⊥ 3|(2, 4)}
4 {1 ⊥⊥ 4|(2, 3)}
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Multivariate Gaussian random variables

The CI statement Xu ⊥⊥ Xv |XV \{u,v} is equivalent to the matrix
ΣV \{u},V \{v}having rank |V {u, v}|, or equivalently
det(ΣV \{u},V \{v}) = 0.

This is equivalent to (Σ−1)u,v = 0.

The pairwise Markov property holds for a Gaussian distribution if and
only if the entries of the concentration matrix corresponding to
non-edges are zero.
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Question (example)
What is the form of the concentration matrices of a Gaussian distribution
obeying the pairwise Markov property have?

1


k11 0 k13 k14
0 k22 0 0

k13 0 k33 0
k14 0 0 k44



2


k11 k12 0 0
k12 k22 k23 k24
0 k23 k33 k34
0 k24 k34 k44
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Global Markov property
Definition (remider!)
[board]

Question (example)
The global Markov property associated to G is:

1 {1 ⊥⊥(3, 4)|2}
2 {1 ⊥⊥ 3|(2, 4), 1 ⊥⊥ 4|(2, 3)}
3 {1 ⊥⊥ 3|(2, 4), 1 ⊥⊥ 4|(2, 3),

1 ⊥⊥(3, 4)|2}
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Markov properties

In the last lecture, Miles showed that pairwise Markov statements Cpairsare
a subset of Global statements Cglobal .

In our example:
Cpairs =
{1 ⊥⊥ 3|(2, 4), 1 ⊥⊥ 4|(2, 3)}.
Cglobal = Cpairs ∪ {1 ⊥⊥(3, 4)|2}.
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Factorization property

We want to characterize all the distributions that satisfy the Markov
properties for a given graph.

Hammersley-Clifford theorem relates the implicit description of a
graphical model through Markov properties to a parametric description.

Recall: definition of factorizing according to a graph via cliques.
[board]

Review Theorem 13.2.10 (recursive factorization in DAGs) with proof.
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Question (example)
What are the maximal cliques of G?

1 {1}
2 {1, 2}
3 {1, 2, 3, }
4 {2, 3, 4}
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Question (example)
What are the maximal cliques of G?

1 {1}
2 {1, 2}
3 {1, 2, 3, }
4 {2, 3, 4}

Correct answers: 2 and 4.
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Examples from 13.4

(Homogeneous) Markov chain - example 13.4.1 and connection to
chapter 1
Hidden Markov model

[board notes]
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Discrete distributions - and algebra&geometry
X = {X1, . . . , Xm} discrete random vector

The distribution p on X factors according to G if

pi1i2...im ∝
∏

C∈C(G)
θ

(C)
iC .

This is a monomial parametrization. Hence the set of distributions
that factorize according to a graph G form a hierarchical log-linear
model.

Cpairs =
{1 ⊥⊥ 3|(2, 4), 1 ⊥⊥ 4|(2, 3)}.
Cglobal = Cpairs ∪ {1 ⊥⊥(3, 4)|2}.

Spell this out: [board]

p(x) = 1
Z θ

(12)
i1i2 θ

(234)
i2i3i4 .
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Pairwise Markov proprety - algebra

Cpairs = {1 ⊥⊥ 3|(2, 4), 1 ⊥⊥ 4|(2, 3)}

Question (example)
How many polynomials generate the corresponding CI ideal?

M1 =
[
p0000 p0001 p0010 p0011
p1000 p1001 p1010 p1011

]

M2 =
[
p0100 p0101 p0110 p0111
p1100 p1101 p1110 p1111

]
The conditional independence ideal for each statement is generated by
two minors of M1 and two minors of M2
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Figure 2: code will be shared after class
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Global Markov property - algebra

Cglobal = Cpairs ∪ {1 ⊥⊥(3, 4)|2}.

M1 =
[
p0000 p0001 p0010 p0011
p1000 p1001 p1010 p1011

]

M2 =
[
p0100 p0101 p0110 p0111
p1100 p1101 p1110 p1111

]
The conditional independence ideal for each statement is generated by
all 2 × 2 minors M1 and of M2

Recall slide 8-9 of Lecture 4!
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Factorization according to G - algebra

pi1i2...im = 1
Z

∏
C∈C(G)

θ
(C)
iC .

Question (example)
How many parameters does this parametrization map have?

pijkl = aijbjkl

We can compute the ideal of this model IG as follows.
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It feels like this will be week 11, day 2. :)
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The usual. . . license

This document is created for Math/Stat 561, Spring 2023.

The slides that are not directly from the book are sourced from Kaie
Kubjas’ Algebraic Statistics course at Aaalto University.

All materials posted on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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