week 11 day 1

Graphical models: continuation Algebraic \& Geometric Methods in Statistics

Sonja Petrović
Created for Math/Stat 561

Mar 22, 2023.

Material

- Chapter 13: Graphical models
- We are following after Miles Bakenhus' course project lecture on sections 13.1 and 13.2.
- We will review a couple of examples from the basics of graphical models (think of the first st of these slides as your study worksheet in class).
- We will then see a few more examples
- Discuss the discrete distributions and connection to algebra\&geometry.

Examples

- Genes:
- three genes in this example A,B,C
- Relationships:
- A regulates C
- B regulates C

BIOLOGY

- genes
- relationships

GRAPH

- vertices
- edges
$P(A, B, C)=$
$P(A) P(B) P(C \mid A, B)$
PROBABILISTIC MODEL
- random variables
- statistical dependencies

Correlation vs causation

- Genes regulated as $X \rightarrow Y \rightarrow Z$
- Z and X are correlated, but do not interact directly

Figure 1: Source: K. Kubjas

Separator

Poll:

Let G be a graph with nodes $\{1,2,3,4\}$ and edges $(1,2),(2,3),(2,4),(3,4)$.
Which of the following sets are separators for the nodes 1 and 4 ?
(1) $\{2\}$
(2) $\{3\}$
(3) $\{2,3\}$
(c) $\{1,2,3,4\}$

Separator

Poll:

Let G be a graph with nodes $\{1,2,3,4\}$ and edges $(1,2),(2,3),(2,4),(3,4)$.
Which of the following sets are separators for the nodes 1 and 4 ?
(1) $\{2\}$
(2) $\{3\}$
(3) $\{2,3\}$
(9) $\{1,2,3,4\}$

Answer

Correct answers: 1. and 3.

Reminder: conditinoal independence definition

[board]

Pairwise Markov property

Let $G=(V, E)$ be an undirected graph.
Definition
The pairwise Markov property associated to G consists of all conditional independence statements

Pairwise Markov property

Let $G=(\mathrm{V}, \mathrm{E})$ be an undirected graph.
Definition
The pairwise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{V(G) \backslash\{u, v\}}$, where (u, v) is not an edge of G.

Pairwise Markov property

Let $G=(V, E)$ be an undirected graph.

Definition

The pairwise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{V(G) \backslash\{u, v\}}$, where (u, v) is not an edge of G.

Question (example)
The pairwise Markov property associated to G below is:
(1) $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
(2) $\{1 \Perp 3|2,1 \Perp 4| 2\}$
(3) $\{1 \Perp 3 \mid(2,4)\}$
(9) $\{1 \Perp 4 \mid(2,3)\}$

Pairwise Markov property

Let $G=(V, E)$ be an undirected graph.

Definition

The pairwise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{V(G) \backslash\{u, v\}}$, where (u, v) is not an edge of G.

Question (example)
The pairwise Markov property associated to G below is:
(1) $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
(2) $\{1 \Perp 3|2,1 \Perp 4| 2\}$
(3) $\{1 \Perp 3 \mid(2,4)\}$
(c) $\{1 \Perp 4 \mid(2,3)\}$

Correct answer: 1 .

Multivariate Gaussian random variables

- The Cl statement $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}}$ is equivalent to the matrix $\Sigma_{V \backslash\{u\}, V \backslash\{v\}}$ having rank $|V\{u, v\}|$, or equivalently $\operatorname{det}\left(\Sigma_{V \backslash\{u\}, V \backslash\{v\}}\right)=0$.
- This is equivalent to $\left(\Sigma^{-1}\right)_{u, v}=0$.
- The pairwise Markov property holds for a Gaussian distribution if and only if the entries of the concentration matrix corresponding to non-edges are zero.

Question (example)

What is the form of the concentration matrices of a Gaussian distribution obeying the pairwise Markov property have?
(1) $\left[\begin{array}{cccc}k_{11} & 0 & k_{13} & k_{14} \\ 0 & k_{22} & 0 & 0 \\ k_{13} & 0 & k_{33} & 0 \\ k_{14} & 0 & 0 & k_{44}\end{array}\right]$
(2) $\left[\begin{array}{cccc}k_{11} & k_{12} & 0 & 0 \\ k_{12} & k_{22} & k_{23} & k_{24} \\ 0 & k_{23} & k_{33} & k_{34} \\ 0 & k_{24} & k_{34} & k_{44}\end{array}\right]$

Question (example)

What is the form of the concentration matrices of a Gaussian distribution obeying the pairwise Markov property have?
(1) $\left[\begin{array}{cccc}k_{11} & 0 & k_{13} & k_{14} \\ 0 & k_{22} & 0 & 0 \\ k_{13} & 0 & k_{33} & 0 \\ k_{14} & 0 & 0 & k_{44}\end{array}\right]$
(2) $\left[\begin{array}{cccc}k_{11} & k_{12} & 0 & 0 \\ k_{12} & k_{22} & k_{23} & k_{24} \\ 0 & k_{23} & k_{33} & k_{34} \\ 0 & k_{24} & k_{34} & k_{44}\end{array}\right]$

Correct answer: 2.

Global Markov property

Definition (remider!) [board]

Question (example)
The global Markov property associated to G is:
(1) $\{1 \Perp(3,4) \mid 2\}$
(2) $\{1 \Perp 3|(2,4), \quad 1 \Perp 4|(2,3)\}$
(3) $\{1 \Perp 3|(2,4), \quad 1 \Perp 4|(2,3)$, $1 \Perp(3,4) \mid 2\}$

Global Markov property

Definition (remider!) [board]

Question (example)
The global Markov property associated to G is:
(1) $\{1 \Perp(3,4) \mid 2\}$
(2) $\{1 \Perp 3|(2,4), \quad 1 \Perp 4|(2,3)\}$
(3) $\{1 \Perp 3|(2,4), \quad 1 \Perp 4|(2,3)$, $1 \Perp(3,4) \mid 2\}$
Correct answer: 3 .

Markov properties

In the last lecture, Miles showed that pairwise Markov statements $C_{p a i r s}$ are a subset of Global statements $C_{\text {global }}$.

- In our example:
- $C_{\text {pairs }}=$ $\{1 \Perp 3|(2,4), \quad 1 \Perp 4|(2,3)\}$.
- $C_{\text {global }}=C_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$.

Factorization property

- We want to characterize all the distributions that satisfy the Markov properties for a given graph.
- Hammersley-Clifford theorem relates the implicit description of a graphical model through Markov properties to a parametric description.
- Recall: definition of factorizing according to a graph via cliques. [board]
- Review Theorem 13.2.10 (recursive factorization in DAGs) with proof.

Question (example)

What are the maximal cliques of G ?
(1) $\{1\}$
(2) $\{1,2\}$
(3) $\{1,2,3$,
(c) $\{2,3,4\}$

Question (example)

What are the maximal cliques of G ?
(1) $\{1\}$
(2) $\{1,2\}$
(3) $\{1,2,3$,
(1) $\{2,3,4\}$

Correct answers: 2 and 4.

Examples from 13.4

- (Homogeneous) Markov chain - example 13.4.1 and connection to chapter 1
- Hidden Markov model
[board notes]

Discrete distributions - and algebra\&geometry

- $X=\left\{X_{1}, \ldots, X_{m}\right\}$ discrete random vector
- The distribution p on X factors according to G if

$$
p_{i_{1} i_{2} \ldots i_{m}} \propto \prod_{C \in \mathcal{C}(G)} \theta_{i_{C}}^{(C)}
$$

- This is a monomial parametrization. Hence the set of distributions that factorize according to a graph G form a hierarchical log-linear model.
$C_{\text {pairs }}=$
$\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$.
$C_{\text {global }}=C_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$.
- Spell this out: [board]

$$
p(x)=\frac{1}{Z} \theta_{i_{1} i_{2}}^{(12)} \theta_{i_{2} i_{3} i_{4}}^{(234)} .
$$

Pairwise Markov proprety - algebra

$C_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
Question (example)
How many polynomials generate the corresponding Cl ideal?

Pairwise Markov proprety - algebra

$C_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
Question (example)
How many polynomials generate the corresponding Cl ideal?

- $M_{1}=\left[\begin{array}{llll}p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011}\end{array}\right]$
- $M_{2}=\left[\begin{array}{llll}p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111}\end{array}\right]$

Pairwise Markov proprety - algebra

$C_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
Question (example)
How many polynomials generate the corresponding Cl ideal?

- $M_{1}=\left[\begin{array}{llll}p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011}\end{array}\right]$
- $M_{2}=\left[\begin{array}{llll}p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111}\end{array}\right]$
- The conditional independence ideal for each statement is generated by two minors of M_{1} and two minors of M_{2}

```
i1 : R1 = QQ[p_(0,0,0,0) ..p_(1,1,1,1)]
01 = R1
01 : PolynomialRing
i2 : M1 = matrix{{p_(0,0,0,0), p_(0,0,0,1),p_(0,0,1,0), p_(0,0,1,1)},{p_(1,0,0,0), p_(1,0,0,1),p_(1,0,1,0),p_(1,0,1,1)}}
```



```
02 : Matrix R1 '
            2
                R1 
i3 : M2 = matrix{{\mp@subsup{p}{-}{\prime}(0,1,0,0),\mp@subsup{p}{-}{\prime}(0,1,0,1),\mp@subsup{p}{-}{\prime}(0,1,1,0),\mp@subsup{p}{-}{\prime}(0,1,1,1)},{\mp@subsup{p}{-}{\prime}(1,1,0,0),\mp@subsup{p}{-}{\prime}(1,1,0,1),\mp@subsup{p}{-}{\prime}(1,1,1,0),\mp@subsup{p}{-}{\prime}(1,1,1,1)}}
```



```
03 : Matrix R1 ' <-- R1
i4 : IP = ideal(det(M1_{0,2}),\operatorname{det}(M1_{1,3}),\operatorname{det}(M2_{0,2}),\operatorname{det}(M2_{1,3}),\operatorname{det}(M1_{0,1}),\operatorname{det}(M1_{2,3}),\operatorname{det}(M2_{0,1}),\operatorname{det}(M2_{2,3}))
```



```
    P 0,1,1,1 P
    P
```



```
[] (P0,1,1,0 ( 1,1,1,1)
04 : Ideal of R1
```

Figure 2: code will be shared after class

Global Markov property - algebra

$C_{\text {global }}=C_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$.

- $M_{1}=\left[\begin{array}{llll}p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011}\end{array}\right]$
- $M_{2}=\left[\begin{array}{llll}p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111}\end{array}\right]$
- The conditional independence ideal for each statement is generated by all 2×2 minors M_{1} and of M_{2}

Recall slide 8-9 of Lecture 4!

Factorization according to G - algebra

$$
p_{i_{1} i_{2} \ldots i_{m}}=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \theta_{i_{C}}^{(C)}
$$

Question (example)
How many parameters does this parametrization map have?

Factorization according to G - algebra

$$
p_{i_{1} i_{2} \ldots i_{m}}=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \theta_{i_{C}}^{(C)} .
$$

Question (example)
How many parameters does this parametrization map have?

$$
p_{i j k l}=a_{i j} b_{j k l}
$$

- We can compute the ideal of this model I_{G} as follows.

It feels like this will be week 11, day 2. :)

The usual. .. license

This document is created for Math/Stat 561, Spring 2023.
The slides that are not directly from the book are sourced from Kaie Kubjas' Algebraic Statistics course at Aaalto University.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

