week 11 day 2

Graphical models: algebra Algebraic & Geometric Methods in Statistics

> Sonja Petrović Created for Math/Stat 561

> > Mar 22, 2023.

Agenda

- Code for generating the minors and the statements from a graph (directed or undirected)
- Ø Binomials? Markov bases? Connection
- ${f 0}$ Computing the MLE of an example graph \mapsto homework 5

Figure 3.2.3: Directed graphs representing (a) $X_1 \perp \!\!\perp X_3 \mid X_2$ and (b) $X_1 \perp \!\!\perp X_2$.

Figure 1: Source: Oberwolfach lectures

• Here is an incredible online resource: Maathuis, Drton, Lauritzen & Wainwright's Handbook of graphical models

Code for generating the minors and the statements from a graph (directed or undirected)

Global & Pairwise Markov proprety - algebra

$$\begin{split} & \mathcal{C}_{pairs} = \{1 \perp\!\!\!\!\perp 3|(2,4), 1 \perp\!\!\!\perp 4|(2,3)\}. \\ & \mathcal{C}_{global} = \mathcal{C}_{pairs} \cup \{1 \perp\!\!\!\!\perp (3,4)|2\}. \end{split}$$

Question (example)

How many polynomials generate the corresponding CI ideal?

•
$$M_1 = \begin{bmatrix} p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011} \end{bmatrix}$$

• $M_2 = \begin{bmatrix} p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111} \end{bmatrix}$

- The conditional independence ideal for each statement is generated by two minors of M_1 and two minors of M_2
- The conditional independence ideal for each statement is generated by all 2×2 minors M_1 and of M_2 4/19

Code for generating the polynomials (minors)

```
R1 = QQ[p_(0,0,0,0)..p_(1,1,1,1)]
M1 = matrix{{p_(0,0,0,0),p_(0,0,0,1),p_(0,0,1,0),p_(0,0,1,1)}, {p_(1,0,0,0),p_(1,0,0,1),p_(1,0,1,0),p_(1,0,1,1)}}
M2 = matrix{{p_(0,1,0,0),p_(0,1,0,1),p_(0,1,1,0),p_(0,1,1,1)}, {p_(1,1,0,0),p_(1,1,0,1),p_(1,1,1,0),p_(1,1,1,1)}}
```

```
--pairwise Markov property
IP = ideal(det(M1_{0,2}),det(M1_{1,3}),det(M2_{0,2}),
    det(M2_{1,3}),det(M1_{0,1}),det(M1_{2,3}),det(M2_{0,1}),det(M2_{2})
--global Markov property
IG = minors(2,M1) + minors(2,M2)
```

Task

Run this code. What is the output? Compare to next page.

- Reminder: Look at slides 10 and 11 of lecture 4 M2 code for computing ideals (minors) of given CI statements.
- We can compute the ideal I_G of a graphical model as follows:

```
i97 : loadPackage "GraphicalModels"
o97 = GraphicalModels
i99 : G = graph(\{\{1,2\},\{2,3\},\{3,4\},\{2,4\}\})
o99 = Graph{1 => {2} }
              2 \Rightarrow \{1, 3, 4\}
              3 \Rightarrow \{2, 4\}
              4 \Rightarrow \{2, 3\}
i100 : pairMarkov G
o100 = \{\{\{1\}, \{4\}, \{2, 3\}\}, \{\{1\}, \{3\}, \{4, 2\}\}\}
i101 : globalMarkov G
o101 = \{\{\{1\}, \{3, 4\}, \{2\}\}\}
-- This method displays only non-redundant statements.
```

... package shortcuts!!

Binomials? Markov bases? Connection

Example 1.2.6 (Independence). Let $\Gamma = [1][2]$. Then the hierarchical model consists of all positive probability matrices $(p_{i_1i_2})$

$$p_{i_1 i_2} = \frac{1}{Z(\theta)} \theta_{i_1}^{(1)} \theta_{i_2}^{(2)}$$

where $\theta^{(j)} \in (0, \infty)^{r_j}$, j = 1, 2. That is, the model consists of all positive rank one matrices. It is the positive part of the model of independence $\mathcal{M}_{X \perp \!\!\!\perp Y}$, or in algebraic geometric language, the positive part of the Segre variety.

Figure 2: Oberwolfach Lectures

Example 3.1.10. Let X_1, X_2, X_3, X_4 be binary random variables, and consider the conditional independence model

$$\mathcal{C} = \{1 \bot\!\!\!\bot 3 \, | \, \{2,4\}, 2 \bot\!\!\!\bot 4 \, | \, \{1,3\}\}.$$

These are the conditional independence statements that hold for the graphical model associated to the four cycle graph with edges {12, 23, 34, 14}; see Section 3.2. The conditional independence ideal is generated by eight quadratic binomials:

$$\begin{split} I_C &= I_{1 \perp 3 \mid \{2,4\}} + I_{2 \perp 4 \mid \{1,3\}} \\ &= \langle p_{1111} p_{2121} - p_{1121} p_{2111}, p_{1112} p_{2122} - p_{1122} p_{2112}, \\ p_{1211} p_{2221} - p_{1221} p_{2211}, p_{1212} p_{2222} - p_{1222} p_{2212}, \\ p_{1111} p_{1212} - p_{1112} p_{1211}, p_{1121} p_{1222} - p_{1122} p_{1221}, \\ p_{2111} p_{2212} - p_{2112} p_{2211}, p_{2121} p_{2222} - p_{2122} p_{2222} \rangle \,. \end{split}$$

The ideal $I_{\mathcal{C}}$ is radical and has nine minimal primes. One of these is a toric ideal I_{Γ} , namely the vanishing ideal of the hierarchical (and graphical) model associated to the simplicial complex $\Gamma = [12][23][34][14]$. The other eight components are linear ideals whose varieties all lie on the boundary of the probability simplex. In particular, all the irreducible components of the variety $V(I_{\mathcal{C}})$ are unirational. \Box

Figure 3: Oberwolfach Lectures

Hierarchical log-linear models

Definition [Simplicial complex]

Definition 9.3.1. For a set S, let 2^S denote its power set, that is, the set of all of its subsets. A *simplicial complex* with ground set S is a set $\Gamma \subseteq 2^S$ such that if $F \in \Gamma$ and $F' \subseteq F$, then $F' \in \Gamma$. The elements of Γ are called the *faces* of Γ and the inclusion maximal faces are the *facets* of Γ .

- We will use the bracket notation from the theory of hierarchical log-linear models
- $\Gamma = [12][13][23]$ is the bracket notation for the simplicial complex $\Gamma = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$. The geometric realization of Γ is the boundary of a triangle.
- Hierarchical models are log-linear models, so they can be described as \mathcal{M}_A for a suitable matrix A associated to the simplicial complex Γ . Notation...

Example 9.3.3 (Independence). Let $\Gamma = [1][2]$. Then the hierarchical model consists of all positive probability matrices $(p_{i_1i_2})$,

$$p_{i_1i_2} = rac{1}{Z(heta)} heta_{i_1}^{(1)} heta_{i_2}^{(2)},$$

where $\theta^{(j)} \in (0,\infty)^{r_j}$, j = 1,2. That is, the model consists of all positive rank one matrices. It is the positive part of the model of independence $\mathcal{M}_{X\perp\!\!\!\!\!\perp Y}$, or, in algebraic geometric language, the positive part of the Segre variety. The normalizing constant is

$$Z(heta) = \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} heta_{i_1} heta_{i_2}.$$

In this case, the normalizing constant factorizes as

$$Z(\theta) = \left(\sum_{i_1=1}^{r_1} \theta_{i_1}\right) \left(\sum_{i_2=1}^{r_2} \theta_{i_2}\right).$$

Complete factorization of the normalizing constant as in this example is a rare phenomenon.

Example 9.3.4 [no-3-factor interaction]

Γ=[12][13][23].

The hierarchical model \mathcal{M}_{Γ} consists of all $r_1 \times r_2 \times r_3$ tables $(p_{i_1i_2i_3})$ with:

$$p_{i_1i_2i_3} = \frac{1}{Z(\theta)} \theta_{i_1i_2}^{(12)} \theta_{i_1i_3}^{(13)} \theta_{i_2i_3}^{(23)},$$

for some positive real tables $\theta^{(12)} \in (0,\infty)^{r_1 \times r_2}$, $\theta^{(13)} \in (0,\infty)^{r_1 \times r_3}$, and $\theta^{(23)} \in (0,\infty)^{r_2 \times r_3}$.

• In the case of binary random variables, its implicit representation is given by the equation:

```
p_{111}p_{122}p_{212}p_{221} = p_{112}p_{121}p_{211}p_{222}.
```

The log-linear model consists of all positive probability distributions that satisfy this quartic equation.

Example - by hand.

Where are the "A" matrices??

Example 9.3.8 (Sufficient statistics of hierarchical models). Returning to our examples above, for $\Gamma = [1][2]$ corresponding to the model of independence, the minimal sufficient statistics are the row and column sums of $u \in \mathbb{N}^{r_1 \times r_2}$. That is,

$$A_{[1][2]}u = (u|_1, u|_2).$$

• The recipe is the same as it was for other models on contingency tables! Columns are joint probabilities and rows are parameters:

Example 9.3.9 (Marginals of a 4-way table). Let $\Gamma = [12][14][23]$ and $r_1 = r_2 = r_3 = r_4 = 2$. Then A_{Γ} is the matrix

 $1111 \ 1112 \ 1121 \ 1122 \ 1211 \ 1212 \ 1221 \ 1222 \ 2111 \ 2112 \ 2121 \ 2122 \ 2211 \ 2212 \ 2221 \ 2222 \ 2222$

11	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
$12 \cdot \cdot$	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	
$21 \cdots$	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	
$22 \cdot \cdot$	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
$1 \cdot \cdot 1$	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	
$1{\cdot}{\cdot}2$	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	
$2 \cdot \cdot 1$	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	, 14
0 0	0	0	0	0	0	0	0	0	0	1	Ο	1	0	1	0	1	14

4/19

These matrices are huge.

How are we ever going to compute anything, like a Markov basis for exact testing?!??

Citing Dobra 2003:

The statistical theory on graphical models (Madigan and York 1995; Whittaker 1990; Lauritzen 1996) shows that the conditional dependencies induced by a set of fixed marginals among the variables cross-classified in a table of counts can be visualized by means of an independence graph. In particular, a lot of attention has been given to **decomposable** graphs (Lauritzen 1996):

- a special class of graphs that can be 'broken' into components such that
 - every component is associated with exactly one fixed marginal, and
 - In o information is lost in the decomposition process, that is, no marginal is 'split' between two components.

• Notation: $|\Gamma| = \text{ground set of the complex } \Gamma$ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.

A simplicial complex Γ is **reducible**, with reducible **decomposition** Γ_1, S, Γ_2 and **separator** $S \subset |\Gamma|$ if it satisfies $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = S$. Furthermore, we assume here that neither Γ_1 nor Γ_2 is = S. A simplicial complex is **decomposable** if it is reducible and Γ_1 and Γ_2 are decomposable or simplices.

• Notation: $|\Gamma| = \text{ground set of the complex } \Gamma$ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.

A simplicial complex Γ is **reducible**, with reducible **decomposition** Γ_1, S, Γ_2 and **separator** $S \subset |\Gamma|$ if it satisfies $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = S$. Furthermore, we assume here that neither Γ_1 nor Γ_2 is = S. A simplicial complex is **decomposable** if it is reducible and Γ_1 and Γ_2 are decomposable or simplices.

- [1][2] = decomposable
- [12][23][345] =

• Notation: $|\Gamma| = \text{ground set of the complex } \Gamma$ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.

A simplicial complex Γ is **reducible**, with reducible **decomposition** Γ_1, S, Γ_2 and **separator** $S \subset |\Gamma|$ if it satisfies $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = S$. Furthermore, we assume here that neither Γ_1 nor Γ_2 is = S. A simplicial complex is **decomposable** if it is reducible and Γ_1 and Γ_2 are decomposable or simplices.

- [1][2] = decomposable
- [12][23][345] = decomposable
- [12][13][23] =

• Notation: $|\Gamma| = \text{ground set of the complex } \Gamma$ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.

A simplicial complex Γ is **reducible**, with reducible **decomposition** Γ_1, S, Γ_2 and **separator** $S \subset |\Gamma|$ if it satisfies $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = S$. Furthermore, we assume here that neither Γ_1 nor Γ_2 is = S. A simplicial complex is **decomposable** if it is reducible and Γ_1 and Γ_2 are decomposable or simplices.

- [1][2] = decomposable
- [12][23][345] = decomposable
- [12][13][23] = not reducible.
- $\Gamma = [12][13][23][345]$ is

• Notation: $|\Gamma| = \text{ground set of the complex } \Gamma$ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.

A simplicial complex Γ is **reducible**, with reducible **decomposition** Γ_1, S, Γ_2 and **separator** $S \subset |\Gamma|$ if it satisfies $\Gamma = \Gamma_1 \cup \Gamma_2$ and $\Gamma_1 \cap \Gamma_2 = S$. Furthermore, we assume here that neither Γ_1 nor Γ_2 is = S. A simplicial complex is **decomposable** if it is reducible and Γ_1 and Γ_2 are

decomposable or simplices.

- [1][2] = decomposable
- [12][23][345] = decomposable
- [12][13][23] = not reducible.
- $\Gamma = [12][13][23][345]$ is reducible but not decomposable, with decomposition ([12][13][23], {3}, [345]).
- Any complex with only *two* facets is decomposable.

Markov bases of decomposable models

- If Γ is decomposable, then the Markov bases can be computed using a divide-and-conquer algorithm (via the decomposition).
 - The upshot is that they are all *quadratic* degree = 2 !
 - See Corollary 9.3.18, Example 9.3.19., but notation :(:(

Adrian Dobra 2003: We show that primitive data swaps or moves are the only moves that have to be included in a Markov basis that links all the contingency tables having a set of fixed marginals when this set of marginals induces a decomposable independence graph. We give formulae that fully identify such Markov bases and show how to use these formulae to dynamically generate random moves.

Markov bases of decomposable models

- If Γ is decomposable, then the Markov bases can be computed using a divide-and-conquer algorithm (via the decomposition).
 - The upshot is that they are all *quadratic* degree = 2 !
 - See Corollary 9.3.18, Example 9.3.19., but notation :(:(

Adrian Dobra 2003: We show that primitive data swaps or moves are the only moves that have to be included in a Markov basis that links all the contingency tables having a set of fixed marginals when this set of marginals induces a decomposable independence graph. We give formulae that fully identify such Markov bases and show how to use these formulae to dynamically generate random moves.

• Good/bad news:

• What do you think about the quartic from Example 9.3.4:

 $\Gamma = [12][13][23]$ has the following implicit description:

 $p_{111}p_{122}p_{212}p_{221} = p_{112}p_{121}p_{211}p_{222}.$

Why is this degree $> 2? \dots$ Is this model decomposable?

Why is [12][23][13] not a cycle?

How are complexes and graphs related?

This document is created for Math/Stat 561, Spring 2023.

Sources: textbook, *Kaie Kubjas*' Algebraic Statistics course at Aalto University.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.