week 11 day 2
 Graphical models: algebra
 Algebraic \& Geometric Methods in Statistics

Sonja Petrović
Created for Math/Stat 561

Mar 22, 2023.

Agenda

(1) Code for generating the minors and the statements from a graph (directed or undirected)
(2) Binomials? Markov bases? Connection
(3) Computing the MLE of an example graph \mapsto homework 5

Figure 3.2.3: Directed graphs representing (a) $X_{1} \Perp X_{3} \mid X_{2}$ and (b) $X_{1} \Perp X_{2}$.

Figure 1: Source: Oberwolfach lectures

- Here is an incredible online resource: Maathuis, Drton, Lauritzen \& Wainwright's Handbook of graphical models

Part One

Code for generating the minors and the statements from a graph (directed or undirected)

Global \& Pairwise Markov proprety - algebra

$C_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$.
$C_{\text {global }}=C_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$.
Question (example)
How many polynomials generate the corresponding Cl ideal?

- $M_{1}=\left[\begin{array}{llll}p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011}\end{array}\right]$
- $M_{2}=\left[\begin{array}{llll}p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111}\end{array}\right]$
- The conditional independence ideal for each statement is generated by two minors of M_{1} and two minors of M_{2}
- The conditional independence ideal for each statement is generated by all 2×2 minors M_{1} and of M_{2}

Code for generating the polynomials (minors)

```
R1 = QQ[p_(0,0,0,0)..p_(1,1,1,1)]
M1 = matrix{{p_(0,0,0,0), p_ (0,0,0,1), p_ (0,0,1,0), p_(0,0,1,1)},
    {p_(1,0,0,0),\mp@subsup{p}{-}{\prime}(1,0,0,1),\mp@subsup{p}{-}{\prime}(1,0,1,0),\mp@subsup{p}{-}{\prime}(1,0,1,1)}}
M2 = matrix{{p_(0,1,0,0), p_(0,1,0,1), p_ (0,1,1,0), p_(0,1,1,1)},
    {p_(1,1,0,0),p_(1,1,0,1),\mp@subsup{p}{-}{\prime}(1,1,1,0),\mp@subsup{p}{-}{\prime}(1,1,1,1)}}
```

--pairwise Markov property
IP = ideal (det (M1_\{0,2\}), det (M1_\{1,3\}), $\operatorname{det}\left(M 2 _\{0,2\}\right)$,
$\operatorname{det}\left(M 2 _\{1,3\}\right), \operatorname{det}\left(M 1 _\{0,1\}\right), \operatorname{det}\left(M 1 _\{2,3\}\right), \operatorname{det}\left(M 2 _\{0,1\}\right), \operatorname{det}\left(M 2 _\{2\right.$
--global Markov property
IG $=$ minors $(2, M 1)+\operatorname{minors}(2, M 2)$

Task
Run this code. What is the output? Compare to next page.

- Reminder: Look at slides 10 and 11 of lecture 4 - M2 code for computing ideals (minors) of given Cl statements.
- We can compute the ideal I_{G} of a graphical model as follows:

```
i97 : loadPackage "GraphicalModels"
o97 = GraphicalModels
i99 : G = graph({{1,2},{2,3},{3,4},{2,4}})
\circ99 = Graph{1 => {2}
    2 => {1, 3, 4}
    3 => {2, 4}
    4 => {2, 3}
```

i100 : pairMarkov G
o100 = \{\{\{1\}, \{4\}, \{2, 3\}\}, \{\{1\}, \{3\}, \{4, 2\}\}\}
i101 : globalMarkov G
o101 = \{\{\{1\}, \{3, 4\}, \{2\}\}\}
-- This method displays only non-redundant statements.

package shortcuts!!

i103 : R=markovRing(2,2,2,2);
i104 : conditionalIndependenceIdeal (R, pairMarkov(G)) / print;

- p p + p p $1,1,1,22,1,1,1 \quad 1,1,1,12,1,1,2$
$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$ 1,1,2,2 2,1,2,1 1,1,2,1 2,1,2,2
$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$
1,2,1,2 2,2,1,1 1,2,1,1 2,2,1,2
$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$

$$
1,2,2,2 \quad 2,2,2,1 \quad 1,2,2,1 \quad 2,2,2,2
$$

$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$
$1,1,2,12,1,1,1 \quad 1,1,1,12,1,2,1$
$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$
1,1,2,2 2,1,1,2 1,1,1,2 2,1,2,2
$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$
$1,2,2,12,2,1,1 \quad 1,2,1,12,2,2,1$
$-\mathrm{p} \quad \mathrm{p} \quad+\mathrm{p} \quad \mathrm{p}$
1,2,2,2 2,2,1,2 1,2,1,2 2,2,2,2

Part Two

Binomials? Markov bases? Connection

The model of independence is a graphical model

Example 1.2.6 (Independence). Let $\Gamma=[1][2]$. Then the hierarchical model consists of all positive probability matrices ($p_{i_{1} i_{2}}$)

$$
p_{i_{1} i_{2}}=\frac{1}{Z(\theta)} \theta_{i_{1}}^{(1)} \theta_{i_{2}}^{(2)}
$$

where $\theta^{(j)} \in(0, \infty)^{r_{j}}, j=1,2$. That is, the model consists of all positive rank one matrices. It is the positive part of the model of independence $\mathcal{M}_{X \Perp Y}$, or in algebraic geometric language, the positive part of the Segre variety.

Figure 2: Oberwolfach Lectures

Example 3.1.10. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be binary random variables, and consider the conditional independence model

$$
\mathcal{C}=\{1 \Perp 3|\{2,4\}, 2 \Perp 4|\{1,3\}\} .
$$

These are the conditional independence statements that hold for the graphical model associated to the four cycle graph with edges $\{12,23,34,14\}$; see Section 3.2. The conditional independence ideal is generated by eight quadratic binomials:

$$
\begin{aligned}
I_{\mathcal{C}}= & I_{1 \Perp 3 \mid\{2,4\}}+I_{2 \Perp 4 \mid\{1,3\}} \\
= & \left\langle p_{1111} p_{2121}-p_{1121} p_{2111}, p_{1112} p_{2122}-p_{1122} p_{2112},\right. \\
& p_{1211} p_{2221}-p_{1221} p_{2211}, p_{1212} p_{2222}-p_{1222} p_{2212}, \\
& p_{1111} p_{1212}-p_{1112} p_{1211}, p_{1121} p_{1222}-p_{1122} p_{1221}, \\
& \left.p_{2111} p_{2212}-p_{2112} p_{2211}, p_{2121} p_{2222}-p_{2122} p_{2221}\right\rangle .
\end{aligned}
$$

The ideal $I_{\mathcal{C}}$ is radical and has nine minimal primes. One of these is a toric ideal I_{Γ}, namely the vanishing ideal of the hierarchical (and graphical) model associated to the simplicial complex $\Gamma=[12][23][34][14]$. The other eight components are linear ideals whose varieties all lie on the boundary of the probability simplex. In particular, all the irreducible components of the variety $V\left(I_{\mathcal{C}}\right)$ are unirational.

Figure 3: Oberwolfach Lectures

Hierarchical log-linear models

Definition [Simplicial complex]
Definition 9.3.1. For a set S, let 2^{S} denote its power set, that is, the set of all of its subsets. A simplicial complex with ground set S is a set $\Gamma \subseteq 2^{S}$ such that if $F \in \Gamma$ and $F^{\prime} \subseteq F$, then $F^{\prime} \in \Gamma$. The elements of Γ are called the faces of Γ and the inclusion maximal faces are the facets of Γ.

- We will use the bracket notation from the theory of hierarchical log-linear models
- $\Gamma=[12][13][23]$ is the bracket notation for the simplicial complex $\Gamma=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$. The geometric realization of Γ is the boundary of a triangle.
- Hierarchical models are log-linear models, so they can be described as \mathcal{M}_{A} for a suitable matrix A associated to the simplicial complex Γ. Notation. . .

Example 9.3.3 (Independence). Let $\Gamma=[1][2]$. Then the hierarchical model consists of all positive probability matrices ($p_{i_{1} i_{2}}$),

$$
p_{i_{1} i_{2}}=\frac{1}{Z(\theta)} \theta_{i_{1}}^{(1)} \theta_{i_{2}}^{(2)},
$$

where $\theta^{(j)} \in(0, \infty)^{r_{j}}, j=1,2$. That is, the model consists of all positive rank one matrices. It is the positive part of the model of independence $\mathcal{M}_{X \Perp Y}$, or, in algebraic geometric language, the positive part of the Segre variety. The normalizing constant is

$$
Z(\theta)=\sum_{i_{1}=1}^{r_{1}} \sum_{i_{2}=1}^{r_{2}} \theta_{i_{1}} \theta_{i_{2}}
$$

In this case, the normalizing constant factorizes as

$$
Z(\theta)=\left(\sum_{i_{1}=1}^{r_{1}} \theta_{i_{1}}\right)\left(\sum_{i_{2}=1}^{r_{2}} \theta_{i_{2}}\right)
$$

Complete factorization of the normalizing constant as in this example is a rare phenomenon.

Example 9.3.4 [no-3-factor interaction]
$\Gamma=[12][13][23]$.
The hierarchical model \mathcal{M}_{Γ} consists of all $r_{1} \times r_{2} \times r_{3}$ tables $\left(p_{i_{1} i_{2} i_{3}}\right)$ with:

$$
p_{i_{1} i_{2} i_{3}}=\frac{1}{Z(\theta)} \theta_{i_{1} i_{2}}^{(12)} \theta_{i_{1} i_{3}}^{(13)} \theta_{i_{2} i_{3}}^{(23)},
$$

for some positive real tables $\theta^{(12)} \in(0, \infty)^{r_{1} \times r_{2}}, \theta^{(13)} \in(0, \infty)^{r_{1} \times r_{3}}$, and $\theta^{(23)} \in(0, \infty)^{r_{2} \times r_{3}}$.

- In the case of binary random variables, its implicit representation is given by the equation:

$$
p_{111} p_{122} p_{212} p_{221}=p_{112} p_{121} p_{211} p_{222}
$$

The log-linear model consists of all positive probability distributions that satisfy this quartic equation.

Example - by hand.

Where are the " A " matrices??

Example 9.3.8 (Sufficient statistics of hierarchical models). Returning to our examples above, for $\Gamma=[1][2]$ corresponding to the model of independence, the minimal sufficient statistics are the row and column sums of $u \in \mathbb{N}^{r_{1} \times r_{2}}$. That is,

$$
A_{[1][2]} u=\left(\left.u\right|_{1},\left.u\right|_{2}\right) .
$$

- The recipe is the same as it was for other models on contingency tables! Columns are joint probabilities and rows are parameters:

Example 9.3.9 (Marginals of a 4-way table). Let $\Gamma=[12][14][23]$ and $r_{1}=r_{2}=r_{3}=r_{4}=2$. Then A_{Γ} is the matrix

$$
\begin{array}{lllllllllllllll}
1111 & 1112 & 1121 & 1122 & 1211 & 1212 & 1221 & 1222 & 2111 & 2112 & 2121 & 2122 & 2211 & 2212 & 2221 \\
2222
\end{array}
$$

$11 \cdots$
$12 .$.
$21 \cdots$
$22 .$.
$1 \cdots 1$
$1 \cdots 2$

0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

1 \cdots \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0

2 \cdots 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1

1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0 \& 1 \& 0\end{array}\right)\),

These matrices are huge.
How are we ever going to compute anything, like a Markov basis for exact testing?!??

Citing Dobra 2003:

The statistical theory on graphical models (Madigan and York 1995; Whittaker 1990; Lauritzen 1996) shows that the conditional dependencies induced by a set of fixed marginals among the variables cross-classified in a table of counts can be visualized by means of an independence graph. In particular, a lot of attention has been given to decomposable graphs (Lauritzen 1996):

- a special class of graphs that can be 'broken' into components such that
(1) every component is associated with exactly one fixed marginal, and
(2) no information is lost in the decomposition process, that is, no marginal is 'split' between two components.

Decomposable complexes

- Notation: $|\Gamma|=$ ground set of the complex Γ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.
A simplicial complex Γ is reducible, with reducible decomposition $\Gamma_{1}, S, \Gamma_{2}$ and separator $S \subset|\Gamma|$ if it satisfies $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=S$. Furthermore, we assume here that neither Γ_{1} nor Γ_{2} is $=S$.
A simplicial complex is decomposable if it is reducible and Γ_{1} and Γ_{2} are decomposable or simplices.

Examples

- [1][2] $=$

Decomposable complexes

- Notation: $|\Gamma|=$ ground set of the complex Γ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.
A simplicial complex Γ is reducible, with reducible decomposition $\Gamma_{1}, S, \Gamma_{2}$ and separator $S \subset|\Gamma|$ if it satisfies $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=S$. Furthermore, we assume here that neither Γ_{1} nor Γ_{2} is $=S$.
A simplicial complex is decomposable if it is reducible and Γ_{1} and Γ_{2} are decomposable or simplices.

Examples

- [1][2] = decomposable
- [12][23][345] =

Decomposable complexes

- Notation: $|\Gamma|=$ ground set of the complex Γ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.
A simplicial complex Γ is reducible, with reducible decomposition $\Gamma_{1}, S, \Gamma_{2}$ and separator $S \subset|\Gamma|$ if it satisfies $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=S$. Furthermore, we assume here that neither Γ_{1} nor Γ_{2} is $=S$.
A simplicial complex is decomposable if it is reducible and Γ_{1} and Γ_{2} are decomposable or simplices.

Examples

- [1][2] = decomposable
- [12][23][345] = decomposable
- [12][13][23] =

Decomposable complexes

- Notation: $|\Gamma|=$ ground set of the complex Γ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.
A simplicial complex Γ is reducible, with reducible decomposition $\Gamma_{1}, S, \Gamma_{2}$ and separator $S \subset|\Gamma|$ if it satisfies $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=S$.
Furthermore, we assume here that neither Γ_{1} nor Γ_{2} is $=S$.
A simplicial complex is decomposable if it is reducible and Γ_{1} and Γ_{2} are decomposable or simplices.

Examples

- [1][2] = decomposable
- [12][23][345] = decomposable
- [12][13][23] $=$ not reducible.
- $\Gamma=[12][13][23][345]$ is

Decomposable complexes

- Notation: $|\Gamma|=$ ground set of the complex Γ (the union of all faces).

Definition [decomposable complex] defn. 9.3.11.
A simplicial complex Γ is reducible, with reducible decomposition $\Gamma_{1}, S, \Gamma_{2}$ and separator $S \subset|\Gamma|$ if it satisfies $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\Gamma_{1} \cap \Gamma_{2}=S$.
Furthermore, we assume here that neither Γ_{1} nor Γ_{2} is $=S$.
A simplicial complex is decomposable if it is reducible and Γ_{1} and Γ_{2} are decomposable or simplices.

Examples

- [1][2] = decomposable
- [12][23][345] = decomposable
- [12][13][23] $=$ not reducible.
- 「 $=$ [12][13][23][345] is reducible but not decomposable, with decomposition ([12][13][23], \{3\}, [345]).
- Any complex with only two facets is decomposable.

Markov bases of decomposable models

- If Γ is decomposable, then the Markov bases can be computed using a divide-and-conquer algorithm (via the decomposition).
- The upshot is that they are all quadratic - degree $=2$!
- See Corollary 9.3.18, Example 9.3.19., but notation : (:

Adrian Dobra 2003: We show that primitive data swaps or moves are the only moves that have to be included in a Markov basis that links all the contingency tables having a set of fixed marginals when this set of marginals induces a decomposable independence graph. We give formulae that fully identify such Markov bases and show how to use these formulae to dynamically generate random moves.

Markov bases of decomposable models

- If Γ is decomposable, then the Markov bases can be computed using a divide-and-conquer algorithm (via the decomposition).
- The upshot is that they are all quadratic - degree $=2$!
- See Corollary 9.3.18, Example 9.3.19., but notation : (:)

Adrian Dobra 2003: We show that primitive data swaps or moves are the only moves that have to be included in a Markov basis that links all the contingency tables having a set of fixed marginals when this set of marginals induces a decomposable independence graph. We give formulae that fully identify such Markov bases and show how to use these formulae to dynamically generate random moves.

- Good/bad news:
- What do you think about the quartic from Example 9.3.4:
$\Gamma=[12][13][23]$ has the following implicit description:

$$
p_{111} p_{122} p_{212} p_{221}=p_{112} p_{121} p_{211} p_{222}
$$

Why is this degree >2 ? ... Is this model decomposable?

Question to ponder.

Why is [12][23][13] not a cycle?
How are complexes and graphs related?

The usual. .. license

This document is created for Math/Stat 561, Spring 2023.
Sources: textbook, Kaie Kubjas' Algebraic Statistics course at Aalto University.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

