Recall: Homotopy Continuation

- Given F, a polynomial system of equations

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{gathered}
$$

Recall: Homotopy Continuation

- Given F, a polynomial system of equations

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{gathered}
$$

- Choose and solve instead an (easier) polynomial system G based on characteristics of F.

Recall: Homotopy Continuation

- Given F, a polynomial system of equations

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{gathered}
$$

- Choose and solve instead an (easier) polynomial system G based on characteristics of F.
- Form the homotopy system $H(x, t)=(1-t) \cdot F(x)+t \cdot G(x)$

Recall: Homotopy Continuation

- Given F, a polynomial system of equations

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{gathered}
$$

- Choose and solve instead an (easier) polynomial system G based on characteristics of F.
- Form the homotopy system $H(x, t)=(1-t) \cdot F(x)+t \cdot G(x)$
- Use predictor-corrector methods to track the numerical solutions as t moves from $t=1$ to $t=0$.

Homotopy Tracking

Figure: Homotopy Continuation Illustration (Dani Brake)

Homotopy Tracking

Theorem (Likelihood Geometry Group)

Fix a generic data vector u with positive entries. Let $c_{\text {win }}$ and $c_{\text {stat }}$ be scalings with positive entries.

Homotopy Tracking

Theorem (Likelihood Geometry Group)

Fix a generic data vector u with positive entries. Let $c_{\text {win }}$ and $c_{\text {stat }}$ be scalings with positive entries. Consider the homotopy with target system the critical likelihood equations for the model $V_{A}^{c_{\text {stat }}}$ and start system the ones for $V_{A}^{c_{\text {win }}}$, with data vector u.

Homotopy Tracking

Theorem (Likelihood Geometry Group)

Fix a generic data vector u with positive entries. Let $c_{\text {win }}$ and $c_{\text {stat }}$ be scalings with positive entries. Consider the homotopy with target system the critical likelihood equations for the model $V_{A}^{c_{\text {stat }}}$ and start system the ones for $V_{A}^{c_{\text {win }}}$, with data vector u. Let $\hat{\theta}_{\text {win }}$ and $\hat{\theta}_{\text {stat }}$ be the respective MLEs and let γ denote the path of the homotopy whose start point (at $t=1$) corresponds to $\hat{\theta}_{\text {win }}$.

Homotopy Tracking

Theorem (Likelihood Geometry Group)

Fix a generic data vector u with positive entries. Let $c_{\text {win }}$ and $c_{\text {stat }}$ be scalings with positive entries. Consider the homotopy with target system the critical likelihood equations for the model $V_{A}^{c_{\text {stat }}}$ and start system the ones for $V_{A}^{c_{\text {win }}}$, with data vector u. Let $\hat{\theta}_{\text {win }}$ and $\hat{\theta}_{\text {stat }}$ be the respective MLEs and let γ denote the path of the homotopy whose start point $(a t=1)$ corresponds to $\hat{\theta}_{\text {win }}$. Then, the endpoint of $\gamma($ at $t=0)$ is $\hat{\theta}_{\text {stat }}$.

Proof Sketch

- By Birch's Theorem, a homotopy between the two systems is given by

$$
H(\theta, t):=t\left(A \hat{p}_{\text {stat }}-\frac{1}{N} A u\right)+(1-t)\left(A \hat{p}_{w i n}-\frac{1}{N} A u\right)
$$

Proof Sketch

- By Birch's Theorem, a homotopy between the two systems is given by

$$
H(\theta, t):=t\left(A \hat{p}_{\text {stat }}-\frac{1}{N} A u\right)+(1-t)\left(A \hat{p}_{w i n}-\frac{1}{N} A u\right)
$$

- This simplifies to $A \cdot\left(\hat{p}_{c(t)}-\frac{1}{N} u\right)$ where $c(t)=t c_{\text {stat }}+(1-t) c_{w i n}$

Proof Sketch

- By Birch's Theorem, a homotopy between the two systems is given by

$$
H(\theta, t):=t\left(A \hat{p}_{\text {stat }}-\frac{1}{N} A u\right)+(1-t)\left(A \hat{p}_{w i n}-\frac{1}{N} A u\right)
$$

- This simplifies to $A \cdot\left(\hat{p}_{c(t)}-\frac{1}{N} u\right)$ where $c(t)=t c_{\text {stat }}+(1-t) c_{\text {win }}$
- For positive real $c_{\text {win }}, c_{\text {stat }}$, we have $c(t)>0$ for any $t \in[0,1]$. Thus by Birch's Theorem there is exactly one positive real solution to the system at every point along the homotopy path.

Proof Sketch

- By Birch's Theorem, a homotopy between the two systems is given by

$$
H(\theta, t):=t\left(A \hat{p}_{\text {stat }}-\frac{1}{N} A u\right)+(1-t)\left(A \hat{p}_{w i n}-\frac{1}{N} A u\right)
$$

- This simplifies to $A \cdot\left(\hat{p}_{c(t)}-\frac{1}{N} u\right)$ where $c(t)=t c_{\text {stat }}+(1-t) c_{w i n}$
- For positive real $c_{\text {win }}, c_{\text {stat }}$, we have $c(t)>0$ for any $t \in[0,1]$. Thus by Birch's Theorem there is exactly one positive real solution to the system at every point along the homotopy path.
- Left to show tracking paths do not intersect (we show the Jacobian matrix of the system has always full rank)

Possible Applications

- In practice, a statistical toric model will come with a specified scaling Cstat.

Possible Applications

- In practice, a statistical toric model will come with a specified scaling $C_{\text {stat }}$.
- Knowing how scaling vectors c affect the ML degree of a particular toric model V_{A} allows us to find a convenient $c_{\text {win }}$ (e.g. such that the model has low ML degree).

Possible Applications

- In practice, a statistical toric model will come with a specified scaling $C_{\text {stat }}$.
- Knowing how scaling vectors c affect the ML degree of a particular toric model V_{A} allows us to find a convenient $c_{\text {win }}$ (e.g. such that the model has low ML degree).
- By the Theorem, we can now find the MLE $\hat{\theta}_{\text {win }}$ and track its unique homotopy path to find the original MLE of interest $\hat{\theta}_{\text {stat }}$.

Application Example

Example (Veronese revisited)

Recall

$$
A=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 2
\end{array}\right]
$$

with $u=(1,3,5,7,9,2)$. Here $c_{\text {stat }}=(1,1,1,1,1,1)$.

Application Example

Example (Veronese revisited)

Recall

$$
A=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 2
\end{array}\right]
$$

with $u=(1,3,5,7,9,2)$. Here $c_{\text {stat }}=(1,1,1,1,1,1)$. By choosing $c_{\text {win }}=(1,2,1,2,2,1)$, the ML degree drops to $\mathbf{1}$.

Application Example

Example (Veronese revisited)

Recall

$$
A=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 2
\end{array}\right]
$$

with $u=(1,3,5,7,9,2)$. Here $c_{\text {stat }}=(1,1,1,1,1,1)$. By choosing $c_{\text {win }}=(1,2,1,2,2,1)$, the ML degree drops to $\mathbf{1}$. Computing the unique critical point we obtain the MLE $\hat{\theta}_{\text {win }}=(.0493827,1.83333,1.66667)$. Tracking this point in the homotopy we arrive at the point $\hat{\theta}_{\text {track }}=(.0863377,1.63267,1.51507)$.

Application Example

Example (Veronese revisited)

Recall

$$
A=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 2
\end{array}\right]
$$

with $u=(1,3,5,7,9,2)$. Here $c_{\text {stat }}=(1,1,1,1,1,1)$. By choosing $c_{\text {win }}=(1,2,1,2,2,1)$, the ML degree drops to $\mathbf{1}$. Computing the unique critical point we obtain the MLE $\hat{\theta}_{\text {win }}=(.0493827,1.83333,1.66667)$. Tracking this point in the homotopy we arrive at the point $\hat{\theta}_{\text {track }}=(.0863377,1.63267,1.51507)$. This coincides with the MLE $\hat{\theta}_{\text {stat }}$ computed before.

Success story

$d-1=5$

$d-1=10$

$$
d-1=15
$$

Figure: Running times of iterative proportional scaling (triangles) versus path tracking (circles) on rational normal scrolls. Average of 7 trials.

