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Agenda

Computing the MLE of an example graph 7→ homework 5

Figure 1: Source: Oberwolfach lectures

Here is an incredible online resource: Maathuis, Drton, Lauritzen &
Wainwright’s Handbook of graphical models
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https://stat.ethz.ch/~mmarloes/papers/Handbook.pdf


Graphical models part 3: how to compute MLEs

Computing the MLE of an example graph 7→ homework 5

pages 2-13
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https://faculty.math.illinois.edu/Macaulay2/Events/Workshop2017Atlanta-files/Day2/Carlos/M2_MLdeg.pdf


Example: Risk Factors for Coronary Heart Disease

Data collected from a sample of 1841 workers employed in the Czech
automotive industry.

S: smoked
B: systolic blood pressure was less than 140 mm
H: family history of coronary heart disease
L: ratio of beta to alpha lipoproteins less than 3

Random vector X = (S, B, H, L) with each risk factor a binary variable, so
X has a state space of cardinality 16:

pijkl = Prob(S = i , B = j , H = k, L = l), i , j , k, l ∈ 0, 1.
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Data

H L B S: no S: yes

neg < 3 < 140 297 275
≥ 140 231 121

≥ 3 < 140 150 191
≥ 140 155 161

pos < 3 < 140 36 37
≥ 140 34 30

≥ 3 < 140 32 36
≥ 140 26 29

(uijkl : i , j , k, l ∈ 0, 1) = (u0000, u0001, ..., u1111) = (297, 275, ..., 29)
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Question
(uijkl : i , j , k, l ∈ 0, 1) = (u0000, u0001, ..., u1111) = (297, 275, ..., 29)

pijkl = Prob(S = i , B = j , H = k, L = l), i , j , k, l ∈ 0, 1.

Given the observed table, what is the probability distribution p̂ = (p̂ijkl) that
"best" explains the data ?
Remember:

S: smoked
B: systolic blood pressure was less than 140 mm
H: family history of coronary heart disease
L: ratio of beta to alpha lipoproteins less than 3

Maximum likelihood estimation
Pre-specified probability model M — a subset of all possible
probability distributions.
Choose p̂ from M.
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Example model [Binary 4-cycle]

S

L

H

B

Model parameters are:

aij , bjk , ckl , dil , for i , j , k, l ∈ {0, 1}
pijkl = aijbjkckldil
M is the set of all probability distributions that can be parametrized in
this way.
Distributions in M have the following properties:

S and H are independent given B and L.
B and L are independent given S and H.
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Maximum likelihood estimation

Likelihood function
ℓu(p) =

∏
i ,j,k,l

puijkl
ijkl .

Look for the maximizer p̂ = (p̂ijkl):

maximize ℓu(p) = pu0000
0000 pu0001

0001 · · · p
u1111
1111 subject to p = (pijkl) ∈M

The optimal solution p̂ is the MLE, the maximum likelihood estimate
(of the data u for the model M).

Homework 5 problem:
Compute this value p̂ explicitly. Using software, by hand, whatever you like!
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MLE computation option: score equations

most straightforward given the one example
write log-likelihood
take partial derivatives
solve (probably numerically using some software of your choice? submit
your code!)
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Some of the theory behind MLE computation

In general for many models there is no analytic formula for the MLE.
Finding a local maximum of the likelihood function by numerical hill
climbing-type methods ← most popular in practice!
Typical problems: not finding global maximum, slow convergence. . .

Definition (informal)
The maximum likelihood degree (ML degree) of an algebraic statistical
model is the number of complex critical points of the likelihood equations
for generic data u.

ML degree is a measure of complexity for maximum likelihood
estimation problem for a model.
ML degree is one ⇐⇒ the MLE is a rational function of the data.

ML Degree of Binary Four Cycle: 13.
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Epilogue

What other options do we have for computing the MLE in this
example?
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MLE computation option: Lagrange multipliers
Recall that the method of Lagrange multipliers is used to solve the following
constrained optimization problem:

max f (x) subject to gi(x) = 0, i = 1, . . . , k.

In the example: f (x) = ℓu(p), gi(x) = the polynomials that define the
CI ideal of the graphical model:

(p1011p1110 − p1010p1111, p0111p1101 − p0101p1111, p1001p1100 − p1000p1101,

p0110p1100 − p0100p1110, p0011p1001 − p0001p1011, p0011p0110 − p0010p0111,

p0001p0100 − p0000p0101, p0010p1000 − p0000p1010,

p0100p0111p1001p1010−p0101p0110p1000p1011, p0010p0101p1011p1100−p0011p0100p1010p1101,

p0001p0110p1010p1101−p0010p0101p1001p1110, p0001p0111p1010p1100−p0011p0101p1000p1110,

p0000p0011p1101p1110−p0001p0010p1100p1111, p0000p0111p1001p1110−p0001p0110p1000p1111,

p0000p0111p1011p1100−p0011p0100p1000p1111, p0000p0110p1011p1101−p0010p0100p1001p1111).
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Recall that the method of Lagrange multipliers is used to solve the following
constrained optimization problem:

max f (x) subject to gi(x) = 0, i = 1, . . . , k.

The Lagrangian of this optimization problem is

L(x , λ) = f (x)−
k∑

i=1
λigi(x).

In the example:

L(p, λ) =
∑

i ,j,k,l
uijkl log pijkl − λ0

∑
ijkl

pijkl − 1

− k∑
m=1

λmgm(p).

(k = number of binomials)
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The constrained critical points of f are among the unconstrained
critical points of L. Hence one has to solve:

g1 = 0 . . . gk = 0 for those binomials gi on the previous slide!

and
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MLE computation option: Discrete exponential families

Corollary [from an old lecture!] — Birch’s Theorem
A ⊂ Zk×r such that 1 ∈ rowspan(A). h ∈ Rr

>0 and u vector of counts from
n iid samples.
Then the MLE of the joint probability vector p in the log-linear modelMA,h
given the data u is the unique – if it exists – solution of the equations

Au = nAp and p ∈MA,h.
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We can use Birch’s theorem with numerical algorithms!

ML geomery group at 2016 MRC
Carlos Amendola, Courtney Gibbons, Evan Nash, Nathan Bliss, Martin
Helmer, Jose Rodriguez, Isaac Burke, Serkan Hosten, Daniel Smolkin.
arXiv:1703.02251

Jump to example slides
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The usual. . . license

This document is created for Math/Stat 561, Spring 2023.

Sources: textbook, Carlos Enrique Améndola Cerón’s slides from a M2
workshop in GA Tech 2017.

All materials posted on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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