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PART 1: Why do we care about distributions?

Who cares about model fitting and testing whether we have the correct
model in the first place?

Why do I have to understand a model?
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Simulation of a coin toss

Let x be the random variable recording the outcome of a coin toss:
xi = 0 if we see Tail on the i-th trial (toss),
xi = 1 if we see heads on the i-th trial.

Fix n = 10000.

Y = the number of heads.
Is the number of heads supposed to be n/2? How far off is it? Does it
vary? What does this mean?

Number of heads: 10 reps
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Sampling distribution of Y appears to have a mean around the
expected number of heads when a fair coin is tossed, which is about
n/2.

The more times we repeat the experiment of n coin tosses, the closer
Y gets to its expected value – this can be measured by looking at both
the mean and the variance of Y.

Means of Y

4974.700
4995.760
5000.562

Vars of Y

2254.083
2254.083
2500.470
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Question:
is it possible that something similar to this always happens?

As we will see, the sampling distribution of Y is approximately normal
with mean equal to the expected value of X .
In other words, the example above illustrates a known result–the
Central Limit Theorem, one of the cornerstone results used in
inference.
You should already be familiar with it from your probability class.
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Importance of sampling distributions
Sampling distributions tell a story about the model behind the data
(i.e., the probability distribution or population from which the data was
sampled);
they give a glimpse into how it was generated.

Example
Histogram of My.Favorite.Sample
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-2.9589 0.8738 10.3285 20.7556 39.8173 43.1161
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Hmm. . .
Is it strange to see “two bumps” in the histogram instead of one, as
usual?
Maybe the sample size is too small, we need to simulate more data?

Histogram of My.Favorite.Sample

My.Favorite.Sample
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density.default(x = My.Favorite.Sample)

N = 10000   Bandwidth = 2.616
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AhaMoment!
What do you see?

This data is not being drawn from anything like a normal distribution.
Consequently, knowing simply the mean and the variance . . . is not
enough to understand the data, that is, the data-generating mechanism
behind it.
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. . . Wait, what was that?!

This was an example of a mixture of normal distributions. We will see
mixture distributions again in the course, soon. (See also link in “License”
page at the end of these slides, which includes source information.)
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PART 2: conditional independence models

Material is from chapter 4 of the textbook.
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Independence
Two independent discrete random variables
Let X ⊂ [n] := {1, . . . , n} and Y ⊂ [m].

X ⊥⊥ Y ⇐⇒ P(X = i , Y = j) = P(X = i)P(Y = J).

In words, the joint probability factorizes as the product of the marginal
probabilities. (Conditioning does not have an effect: recall definition of
independent events from Lecture 2.)

Two independent continuous random variables
Let X ⊂ X and Y ⊂ Y.

X ⊥⊥ Y ⇐⇒ fX ,Y (x , y) = fX (x)fY (y).

In words, the joint density factorizes as the product of the marginal
densities.
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→ Extend definition of independence to sets of random variables. Example:
3 discrete random varaibles:

Figure 1: Source: Bernd Sturmfel’s invitatino to Alg Stats lecture, SAMSI 2008
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Conditional independence
Recall the definition of a conditional probability from Lecture 2.

Figure 2: Source: Algebraic statistics, Seth Sullivant, AMS-GSM book

Example: 3 r.v. and one CI statement
XA = X , XB = Y , XC = Z each vector is a single random variable.

fX |Y ,Z (x |y , z) =
fX ,Y |Z (x , y |z)

fY |Z (y |z) = fX |Z (x |z).

Given Z , knowing X does not give any information about Y .
→ Check discussion after definition 4.1.2, page 73 of the book!
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Marginal independence

Figure 3: Source: Algebraic statistics, Seth Sullivant, AMS-GSM book

Note: Marginal independence is the same thing as independence of
random variables: factorization of joint as product of marginal densities.
We use the term ‘marginal’ when there are more random variables.
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The mathematics behind conditional independnece
Suppose a random vector X satisfies a set of conditional independence
statements. Which other conditional independence relations must the
same random vector satisfy?
There is no finite set of axioms from which all conditional
independence relations can be deduced.
There are some easy conditional independence implications, which are
called the conditional independence axioms or conditional
independence rules.
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Conditional independence axioms

Figure 4: Source: Algebraic statistics, Seth Sullivant, AMS-GSM book

Work time!
Complete the worksheet 1 handout in lecture.
Problem: complete the steps of the proof of the 4 CI axioms from this slide.
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Additional example for hands-on work 7→ homework 2

we did not get to cover this example today.

Let
P(X3=0) :=

(
0.05 0.15
0.075 0.225

)
, P(X3=1) :=

(
0.125 0.125
0.125 0.125

)
.

Consider three binary random variables X1, X2, X3 each taking values in the
set {0, 1} with joint probabilities P(X1 = i , X2 = j , X3 = 0) = P(X3=0)

i ,j and
P(X1 = i , X2 = j , X3 = 1) = P(X3=1)

i ,j .
1 Find the marginal distribution PX1 of X1. (Recall that in the discrete

case, integration is substituted by summation.)
2 Find the conditional distribution PX2,X3|X1 of (X2, X3) given X1.
3 Is X2 conditionally independent of X3 given X1?
4 Is X1 conditionally independent of X2 given X3?
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License

This document is created for Math/Stat 561, Spring 2023, at Illinois Tech.

Examples are drawn from other sources; for details see this file with full
references. That document also contains important questions you may wish
to think about.

The worksheet is from Kaie Kubjas, handed out in our class with her
permission.

All materials posted on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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