Conditional independence: the algebra behind the models
"Algebraic \& Geometric Methods in Statistics"

Sonja Petrović
Created for Math/Stat 561

Jan 23, 2023.

Objective

Understand how to translate conditional independence statements into polynomials, and what these polynomials mean.

Recall conditional independence (Cl) from Lecture 3

Definition 4.1.2. Let $A, B, C \subseteq[m]$ be pairwise disjoint. The random vector X_{A} is conditionally independent of X_{B} given X_{C} if and only if

$$
f_{A \cup B \mid C}\left(x_{A}, x_{B} \mid x_{C}\right)=f_{A \mid C}\left(x_{A} \mid x_{C}\right) \cdot f_{B \mid C}\left(x_{B} \mid x_{C}\right)
$$

for all x_{A}, x_{B}, and x_{C}. The notation $X_{A} \Perp X_{B} \mid X_{C}$ is used to denote that the random vector X satisfies the conditional independence statement that X_{A} is conditionally independent of X_{B} given X_{C}. This is often further abbreviated to $A \Perp B \mid C$.

Figure 1: Source: Algebraic statistics, Seth Sullivant, AMS-GSM book

Real life examples ${ }^{1}$

Reminder: The conditional probability of A given B is represented by $P(A \mid B)$. The random variables A and B are said to be independent if $P(A)=$ $P(A \mid B)$ (or alternatively if $P(A, B)=P(A) P(B)$).

Example 1

Suppose Norman and Martin each toss separate coins.

- Let A represent the random variable "Norman's toss outcome", and B represent the random variable "Martin's toss outcome".
- Both A and B have two possible values (Heads and Tails).
- It would be uncontroversial to assume that A and B are independent. Evidence about B will not change our belief in A.

[^0]
Example 2

Now suppose both Martin and Norman toss the same coin.

- Again $A=$ "Norman's toss outcome", and $B=$ "Martin's toss outcome".
- Assume also that there is a possibility that the coin in biased towards heads but we do not know this for certain.
- In this case A and B are not independent.

Example: observing $\mathrm{B}=$ Heads causes us to increase our belief in $\mathrm{A}=$ Heads! So $P(a \mid b)>P(b)$ in the case when $a=$ Heads and $b=$ Heads.

- RV s A and B are both dependent on a separate random variable C , "the coin is biased towards Heads" (which has the values True or False).
- Although A and B are not independent, it turns out that once we know for certain the value of C then any evidence about B cannot change our belief about A.

Specifically: $P(A \mid C)=P(A \mid B, C)$, so $\mathrm{CI} A \Perp B \mid C$ holds.

Example 3: $A \Perp B \mid C$ see full gif

In many real life situations variables which are believed to be independent are actually only independent conditional on some other variable.

- Norman and Martin live on opposite sides of the City
- Norman takes the train to work. Martin drives.
- Random variables: $\mathrm{A}=$ "Norman late", $\mathrm{B}=$ "Martin late" (true/false)
- $A \Perp B$??
- are you sure? what about fuel shortage?
- what about ... more traffic on the raod due to a train strike?
- Let $C=$ "train strike".
- Clearly $P(A)$ will increase if C is true; but $P(B)$ will also increase because of extra traffic on the roads.

Example \mapsto homework 2

Discussion of the setup. ${ }^{* *}$ [Whiteboard illustration.] ${ }^{* *}$

Consider three binary random variables X_{1}, X_{2}, X_{3}, with joint probabilities $P\left(X_{1}=i, X_{2}=j, X_{3}=0\right)=P_{i, j}^{\left(X_{3}=0\right)}$ and $P\left(X_{1}=i, X_{2}=j, X_{3}=1\right)=P_{i, j}^{\left(X_{3}=1\right)}$, with:

$$
P^{\left(X_{3}=0\right)}:=\left(\begin{array}{cc}
0.05 & 0.15 \\
0.075 & 0.225
\end{array}\right), P^{\left(X_{3}=1\right)}:=\left(\begin{array}{cc}
0.125 & 0.125 \\
0.125 & 0.125
\end{array}\right) .
$$

\rightarrow This is a $2 \times 2 \times 2$ table, similar to the Berkeley admissions example in lecture3 handout. \leftarrow

- Find the marginal distribution $P_{X_{1}}$ of X_{1}. (Recall that in the discrete case, integration is substituted by summation.)
- Find the conditional distribution $P_{X_{2}, X_{3} \mid X_{1}}$ of $\left(X_{2}, X_{3}\right)$ given X_{1}.
- Is X_{2} conditionally independent of X_{3} given X_{1} ?
- Is X_{1} conditionally independent of X_{2} given X_{3} ?

The Cl statement is a polynomial in the model probabilities!

Proposition (4.1.6.) \& Definition (4.1.7.)
If X is a discrete random vector $X=\left(X_{1}, \ldots, X_{m}\right)$, then the Cl statement $X_{A} \Perp X_{B} \mid X_{C}$ is equivalent to

$$
p_{i_{A}, i_{B}, i_{C},+} \cdot p_{j_{A}, j_{B}, i_{C},+}-p_{i_{A}, j_{B}, i_{C},+} \cdot p_{j_{A}, i_{B}, i_{C},+}=0
$$

for all possible states of the variables $i_{A}, j_{A}, i_{B}, j_{B}$, and i_{C}.
The Cl ideal $I_{A \Perp B \mid C}$ is the set of polynomials generated by all quadratic polynomials above.

The Cl statement is a polynomial in the model probabilities!

Proposition (4.1.6.) \& Definition (4.1.7.)
If X is a discrete random vector $X=\left(X_{1}, \ldots, X_{m}\right)$, then the Cl statement $X_{A} \Perp X_{B} \mid X_{C}$ is equivalent to

$$
p_{i_{A}, i_{B}, i_{C},+} \cdot p_{j_{A}, j_{B}, i_{C},+}-p_{i_{A}, j_{B}, i_{C},+} \cdot p_{j_{A}, i_{B}, i_{C},+}=0
$$

for all possible states of the variables $i_{A}, j_{A}, i_{B}, j_{B}$, and i_{C}.
The Cl ideal $I_{A \Perp B \mid C}$ is the set of polynomials generated by all quadratic polynomials above.

- Week 1: we wrote the 3-step binary Markov chain model as a (semi)algebraic set: the set of probability distributions satisfying polynomial equations (and inequalities).
- ... all polynomials? how many are there?
- ... "generated"?

Advanced HW (on hw2)

Prove proposition 4.1.6. The outline of the proof is in the book.

Example

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be four discrete random variables with the following state spaces: $X_{1} \subset\{1,2,3\}, X_{2}, X_{3}, X_{4} \subset\{1,2\}$.

- Interpret: $X_{1}=$ gender (M/F/other), $X_{2}=$ short hair $(1=y / 2=n), X_{3}$ $=$ likes soccer (y / n), $X_{4}=$ from Brazil (y / n).
$X_{1} \Perp X_{2} \mid X_{3} \Longleftrightarrow$

Advanced HW (on hw2)

Prove proposition 4.1.6. The outline of the proof is in the book.

Example

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be four discrete random variables with the following state spaces: $X_{1} \subset\{1,2,3\}, X_{2}, X_{3}, X_{4} \subset\{1,2\}$.

- Interpret: $X_{1}=$ gender (M/F/other), $X_{2}=$ short hair $(1=\mathrm{y} / 2=\mathrm{n}), X_{3}$ $=$ likes soccer $(y / n), X_{4}=$ from Brazil (y / n).
$X_{1} \Perp X_{2} \mid X_{3} \Longleftrightarrow p_{1,1,1,+} \cdot p_{2,2,1,+}-p_{1,2,1,+} \cdot p_{2,1,1,+}=0$

Advanced HW (on hw2)

Prove proposition 4.1.6. The outline of the proof is in the book.

Example

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be four discrete random variables with the following state spaces: $X_{1} \subset\{1,2,3\}, X_{2}, X_{3}, X_{4} \subset\{1,2\}$.

- Interpret: $X_{1}=$ gender (M/F/other), $X_{2}=$ short hair $(1=y / 2=\mathrm{n}), X_{3}$ $=$ likes soccer $(y / n), X_{4}=$ from Brazil (y / n).
$X_{1} \Perp X_{2} \mid X_{3} \Longleftrightarrow p_{1,1,1,+} \cdot p_{2,2,1,+}-p_{1,2,1,+} \cdot p_{2,1,1,+}=0$
$p_{1,1,1,+} \cdot p_{2,3,1,+}-p_{1,3,1,+} \cdot p_{2,1,1,+}=0$
$p_{1,2,1,+} \cdot p_{2,3,1,+}-p_{1,3,1,+} \cdot p_{2,2,1,+}=0$

Advanced HW (on hw2)

Prove proposition 4.1.6. The outline of the proof is in the book.

Example

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be four discrete random variables with the following state spaces: $X_{1} \subset\{1,2,3\}, X_{2}, X_{3}, X_{4} \subset\{1,2\}$.

- Interpret: $X_{1}=$ gender (M/F/other), $X_{2}=$ short hair $(1=\mathrm{y} / 2=\mathrm{n}), X_{3}$ $=$ likes soccer $(y / n), X_{4}=$ from Brazil (y / n).
$X_{1} \Perp X_{2} \mid X_{3} \Longleftrightarrow p_{1,1,1,+} \cdot p_{2,2,1,+}-p_{1,2,1,+} \cdot p_{2,1,1,+}=0$
$p_{1,1,1,+} \cdot p_{2,3,1,+}-p_{1,3,1,+} \cdot p_{2,1,1,+}=0$
$p_{1,2,1,+} \cdot p_{2,3,1,+}-p_{1,3,1,+} \cdot p_{2,2,1,+}=0$
$p_{1,1,2,+} \cdot p_{2,2,2,+}-p_{1,2,2,+} \cdot p_{2,1,2,+}=0$ and more! !!
- And all of these +s mean, e.g., $p_{1,1,1,+}=p_{1,1,1,1}+p_{1,1,1,2}$.

Question

Is there an efficient way of (1) encoding these polynomials and (2) generating them for a simple exmaple??

Example Macaulay2 code

```
Macaulay2, version 1.18
i1 : loadPackage "GraphicalModels";
i2 : R = markovRing (3,2,2,2);
o2 = R
o2 : PolynomialRing
i3 : rvNames = {gender,hair,soccer,brazil}
o3 = {gender,hair,soccer,brazil}
o3 : List
i4 : CIstatements = { {{gender},{hair},{soccer}} }
-- this says gender indep. of hair given soccer
o4 = {{{gender},{hair},{soccer}}}
o4 : List
i5 : conditionalIndependenceIdeal(R,CIstatements,rvNames)
You can compute this online yourself.. The lines starting with "i" are input
lines that you type into the editor to execute them.
```

$$
\begin{aligned}
& \text { ideal }\left(-p_{1,2,1,1} p_{2,1,1,1}-p_{1,2,1,2} p_{2,1,1,1}-p_{1,2,1,1} p_{2,1,1,2}-p_{1,2,1,2} p_{2,1,1,2}+\right. \\
& p_{1,1,1,1} p_{2,2,1,1}+p_{1,1,1,2} p_{2,2,1,1}+p_{1,1,1,1} p_{2,2,1,2}+p_{1,1,1,2} p_{2,2,1,2} \\
& -p_{1,2,1,1} p_{3,1,1,1}-p_{1,2,1,2} p_{3,1,1,1}-p_{1,2,1,1} p_{3,1,1,2}-p_{1,2,1,2} p_{3,1,1,2}+ \\
& p_{1,1,1,1} p_{3,2,1,1}+p_{1,1,1,2} p_{3,2,1,1}+p_{1,1,1,1} p_{3,2,1,2}+p_{1,1,1,2} p_{3,2,1,2} \\
& -p_{2,2,1,1} p_{3,1,1,1}-p_{2,2,1,2} p_{3,1,1,1}-p_{2,2,1,1} p_{3,1,1,2}-p_{2,2,1,2} p_{3,1,1,2}+ \\
& p_{2,1,1,1} p_{3,2,1,1}+p_{2,1,1,2} p_{3,2,1,1}+p_{2,1,1,1} p_{3,2,1,2}+p_{2,1,1,2} p_{3,2,1,2} \\
& -p_{1,2,2,1} p_{2,1,2,1}-p_{1,2,2,2} p_{2,1,2,1}-p_{1,2,2,1} p_{2,1,2,2}-p_{1,2,2,2} p_{2,1,2,2}+ \\
& p_{1,1,2,1} p_{2,2,2,1}+p_{1,1,2,2} p_{2,2,2,1}+p_{1,1,2,1} p_{2,2,2,2}+p_{1,1,2,2} p_{2,2,2,2} \\
& -p_{1,2,2,1} p_{3,1,2,1}-p_{1,2,2,2} p_{3,1,2,1}-p_{1,2,2,1} p_{3,1,2,2}-p_{1,2,2,2} p_{3,1,2,2}+ \\
& p_{1,1,2,1} p_{3,2,2,1}+p_{1,1,2,2} p_{3,2,2,1}+p_{1,1,2,1} p_{3,2,2,2}+p_{1,1,2,2} p_{3,2,2,2} \\
& -p_{2,2,2,1} p_{3,1,2,1}-p_{2,2,2,2} p_{3,1,2,1}-p_{2,2,2,1} p_{3,1,2,2}-p_{2,2,2,2} p_{3,1,2,2}+ \\
& \left.p_{2,1,2,1} p_{3,2,2,1}+p_{2,1,2,2} p_{3,2,2,1}+p_{2,1,2,1} p_{3,2,2,2}+p_{2,1,2,2} p_{3,2,2,2}\right) \\
& \text { Class work: } \\
& \text { Determine why these are correct. worksheet 2. }
\end{aligned}
$$

Homework 1, problem 3 [due today]

Example 3.1.6 (Marginal independence). The (marginal) independence statement $X_{1} \Perp X_{2}$, or equivalently, $X_{1} \Perp X_{2} \mid X_{\emptyset}$, amounts to saying that the matrix

$$
\left(\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 r_{2}} \\
p_{21} & p_{22} & \cdots & p_{2 r_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
p_{r_{1} 1} & p_{r_{1} 2} & \cdots & p_{r_{1} r_{2}}
\end{array}\right)
$$

has rank one. The independence ideal $I_{1 \Perp 2}$ is generated by the 2×2-minors:

$$
I_{1 \Perp 2}=\left\langle p_{i_{1} i_{2}} p_{j_{1} j_{2}}-p_{i_{1} j_{2}} p_{i_{2} j_{1}} \mid i_{1}, j_{1} \in\left[r_{1}\right], i_{2}, j_{2} \in\left[r_{2}\right]\right\rangle
$$

For marginal independence, we already saw these quadratic binomial constraints in Chapter 1.

Figure 2: From the Lectures on Algebraic Statistics book

Algebraic varieties and polynomial ideals

We have already seen these in Lecture 1, and in homework 1 (problem 4). Here is a brief overview of what you need to know.

- A variety is the solution set to a simultaneous system of polynomial equations.
- If I is an ideal ${ }^{2}$, then $\mathrm{V}(\mathrm{I})$ is the variety defined by the vanishing of all polynomials in I.
- Hilbert basis theorem: even if I is infinite (it is!), there exists a finite basis for every I.

Important questions for statistics [digest next 2 slides]:

- what are points in a variety?
- how do you check if a point is on a variety?
- what if you are given an observation of 3 binary random variables, can you use polynomials to check some Cl statements?

[^1]Recall Example 1.1.2 from the book: 3-step Markov chain.
$p_{i j k}=P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)$ and $P\left(X_{3}=k \mid X_{1}=i, X_{2}=j\right)=\frac{p_{i j k}}{p_{i j}}$.
You verified that a probability distribution, represented by a vector of probabilities $p=\left(p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}\right) \in \mathbb{R}^{8}$, being in this model is equivalent to the following four conditions:

$$
\begin{gathered}
p_{i j k} \geq 0 \text { for all } i, j, k \in\{0,1\}, \quad \sum_{i, j, k} p_{i j k}=1, \\
p_{000} p_{101}-p_{001} p_{100}=0, \text { and } p_{010} p_{111}-p_{011} p_{110}=0 .
\end{gathered}
$$

- In this example: what is the variety?

Recall Example 1.1.2 from the book: 3-step Markov chain.
$p_{i j k}=P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)$ and $P\left(X_{3}=k \mid X_{1}=i, X_{2}=j\right)=\frac{p_{i j k}}{p_{i j+}}$.
You verified that a probability distribution, represented by a vector of probabilities $p=\left(p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}\right) \in \mathbb{R}^{8}$, being in this model is equivalent to the following four conditions:

$$
\begin{gathered}
p_{i j k} \geq 0 \text { for all } i, j, k \in\{0,1\}, \quad \sum_{i, j, k} p_{i j k}=1, \\
p_{000} p_{101}-p_{001} p_{100}=0, \text { and } p_{010} p_{111}-p_{011} p_{110}=0 .
\end{gathered}
$$

- In this example: what is the variety?
- Is the point $(1 / 8,1 / 8, \ldots, 1 / 8)$ on this variety? (That is, is this joint probability vector in the model?)
- [Verify right now, by hand.]

Recall Example 1.1.2 from the book: 3-step Markov chain.
$p_{i j k}=P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)$ and $P\left(X_{3}=k \mid X_{1}=i, X_{2}=j\right)=\frac{p_{i j k}}{p_{i j}}$.
You verified that a probability distribution, represented by a vector of probabilities $p=\left(p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}\right) \in \mathbb{R}^{8}$, being in this model is equivalent to the following four conditions:

$$
\begin{gathered}
p_{i j k} \geq 0 \text { for all } i, j, k \in\{0,1\}, \quad \sum_{i, j, k} p_{i j k}=1, \\
p_{000} p_{101}-p_{001} p_{100}=0, \text { and } p_{010} p_{111}-p_{011} p_{110}=0 .
\end{gathered}
$$

- In this example: what is the variety?
- Is the point $(1 / 8,1 / 8, \ldots, 1 / 8)$ on this variety? (That is, is this joint probability vector in the model?)
- [Verify right now, by hand.]
- Find an example of a point on the variety, which is a point in this model.
- [Discussion of HW 1.b).]

Varieties

Points on the model \leftrightarrow points on the variety.
What are model ideals?
If $p_{000} p_{101}-p_{001} p_{100}=0$ and $p_{010} p_{111}-p_{011} p_{110}=0$ both hold for a probability vector $p=\left(p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}\right) \in \mathbb{R}^{8}$, then what other polynomial equations also hold?

Varieties
 Points on the model \leftrightarrow points on the variety.

What are model ideals?
If $p_{000} p_{101}-p_{001} p_{100}=0$ and $p_{010} p_{111}-p_{011} p_{110}=0$ both hold for a probability vector $p=\left(p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}\right) \in \mathbb{R}^{8}$, then what other polynomial equations also hold?

- All such equations vanish on the points of the model.
- [Discussion.]
- The (infinite) collection of all of these polynomials is the ideal of this statistical model.
- It is an equivalent description of the model.
- [\rightarrow algebraic geometry.]

Ideals
The (defining) ideal of a model is the set of all polynomials that simultaneously vanish on all points in the model.

Luckily, there is a finite basis for each ideal.

How to combine several Cl statements?

Sum of ideals.

Example 3.1.10. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be binary random variables, and consider the conditional independence model

$$
\mathcal{C}=\{1 \Perp 3|\{2,4\}, 2 \Perp 4|\{1,3\}\} .
$$

These are the conditional independence statements that hold for the graphical model associated to the four cycle graph with edges $\{12,23,34,14\}$; see Section 3.2. The conditional independence ideal is generated by eight quadratic binomials:

$$
\begin{aligned}
I_{\mathcal{C}}= & I_{1 \Perp 3 \mid\{2,4\}}+I_{2 \Perp 4 \mid\{1,3\}} \\
= & \left\langle p_{1111} p_{2121}-p_{1121} p_{2111}, p_{1112} p_{2122}-p_{1122} p_{2112}\right. \\
& p_{1211} p_{2221}-p_{1221} p_{2211}, p_{1212} p_{2222}-p_{1222} p_{2212} \\
& p_{1111} p_{1212}-p_{1112} p_{1211}, p_{1121} p_{1222}-p_{1122} p_{1221} \\
& \left.p_{2111} p_{2212}-p_{2112} p_{2211}, p_{2121} p_{2222}-p_{2122} p_{2221}\right\rangle .
\end{aligned}
$$

Figure 3: From the Lectures on Algebraic Statistics book

Appendix

Here are some additional examples you may wish to explore, to familiarize yourself with conditional independence:

- This is where the Martin\&Normal example came from.
- This informal website has some additional interesting examples.
- Here is a set of slides with several real-world examples of Cl random variables.

License

This document is created for Math/Stat 561, Spring 2023, at Illinois Tech.
The first example is from Kaie Kubjas' course. Other online sources are cited throughout.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

[^0]: ${ }^{1}$ Credit: Normal Fenton

[^1]: ${ }^{2}$ an ideal is the infinite set of polynomial combination of some generating set.

