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Objective

Understand how to translate conditional independence statements into
polynomials, and what these polynomials mean.
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Recall conditional independence (CI) from Lecture 3

Figure 1: Source: Algebraic statistics, Seth Sullivant, AMS-GSM book
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Real life examples1

Reminder:The conditional probability of A given B is represented by P(A|B).
The random variables A and B are said to be independent if P(A)=
P(A|B) (or alternatively if P(A,B)=P(A) P(B)).

Example 1
Suppose Norman and Martin each toss separate coins.

Let A represent the random variable “Norman’s toss outcome”, and B
represent the random variable “Martin’s toss outcome”.
Both A and B have two possible values (Heads and Tails).
It would be uncontroversial to assume that A and B are independent.

Evidence about B will not change our belief in A.

1Credit: Normal Fenton
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https://www.normanfenton.com/


Example 2
Now suppose both Martin and Norman toss the same coin.

Again A = “Norman’s toss outcome”, and B = “Martin’s toss
outcome”.
Assume also that there is a possibility that the coin in biased
towards heads but we do not know this for certain.
In this case A and B are not independent.

Example: observing B = Heads causes us to increase our belief in A =
Heads! So P(a|b)>P(b) in the case when a=Heads and b=Heads.

RVs A and B are both dependent on a separate random variable C,
“the coin is biased towards Heads” (which has the values True or False).
Although A and B are not independent, it turns out that once we know
for certain the value of C then any evidence about B cannot change
our belief about A.

Specifically: P(A|C) = P(A|B, C), so CI A⊥⊥B|C holds.
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Example 3: A⊥⊥B|C see full gif
In many real life situations variables which are believed to be independent
are actually only independent conditional on some other variable.

Norman and Martin live on opposite sides of the City
Norman takes the train to work. Martin drives.
Random variables: A = “Norman late” , B = “Martin late” (true/false)
A⊥⊥B ??

are you sure? what about fuel shortage?
what about . . . more traffic on the raod due to a train strike?

Let C = “train strike”.
Clearly P(A) will increase if C is true; but P(B) will also increase
because of extra traffic on the roads.

Train strike

Norman late Martin late
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https://www.eecs.qmul.ac.uk/~norman/BBNs/norman_martin_late.gif


Example 7→ homework 2
Discussion of the setup. **[Whiteboard illustration.]**

Consider three binary random variables X1, X2, X3, with joint probabilities
P(X1 = i , X2 = j , X3 = 0) = P(X3=0)

i ,j and
P(X1 = i , X2 = j , X3 = 1) = P(X3=1)

i ,j , with:

P(X3=0) :=
(

0.05 0.15
0.075 0.225

)
, P(X3=1) :=

(
0.125 0.125
0.125 0.125

)
.

→ This is a 2× 2× 2 table, similar to the Berkeley admissions example in
lecture3 handout.←

Find the marginal distribution PX1 of X1. (Recall that in the discrete
case, integration is substituted by summation.)
Find the conditional distribution PX2,X3|X1 of (X2, X3) given X1.
Is X2 conditionally independent of X3 given X1?
Is X1 conditionally independent of X2 given X3? 7 / 18



The CI statement is a polynomial in the model probabilities!

Proposition (4.1.6.) & Definition (4.1.7.)
If X is a discrete random vector X = (X1, . . . , Xm), then the CI statement
XA⊥⊥XB|XC is equivalent to

piA,iB ,iC ,+ · pjA,jB ,iC ,+ − piA,jB ,iC ,+ · pjA,iB ,iC ,+ = 0

for all possible states of the variables iA, jA, iB, jB, and iC .
The CI ideal IA ⊥⊥ B|C is the set of polynomials generated by all quadratic
polynomials above.

Week 1: we wrote the 3-step
binary Markov chain model as
a (semi)algebraic set: the set
of probability distributions
satisfying polynomial equations
(and inequalities).

. . . all polynomials? how many
are there?

. . . “generated”?
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Advanced HW (on hw2)
Prove proposition 4.1.6. The outline of the proof is in the book.

Example
Let X1, X2, X3, X4 be four discrete random variables with the following state
spaces: X1 ⊂ {1, 2, 3}, X2, X3, X4 ⊂ {1, 2}.

Interpret: X1 = gender (M/F/other), X2 = short hair (1=y/2=n), X3
= likes soccer (y/n), X4 = from Brazil (y/n).

X1⊥⊥X2|X3 ⇐⇒

p1,1,1,+ · p2,2,1,+ − p1,2,1,+ · p2,1,1,+ = 0
p1,1,1,+ · p2,3,1,+ − p1,3,1,+ · p2,1,1,+ = 0
p1,2,1,+ · p2,3,1,+ − p1,3,1,+ · p2,2,1,+ = 0
. . .
p1,1,2,+ · p2,2,2,+ − p1,2,2,+ · p2,1,2,+ = 0 and more! !!

And all of these +s mean, e.g., p1,1,1,+ = p1,1,1,1 + p1,1,1,2.

Question
Is there an efficient way of (1) encoding these polynomials and (2)
generating them for a simple exmaple??
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Example Macaulay2 code

Macaulay2, version 1.18
i1 : loadPackage "GraphicalModels";
i2 : R = markovRing (3,2,2,2);
o2 = R
o2 : PolynomialRing
i3 : rvNames = {gender,hair,soccer,brazil}
o3 = {gender,hair,soccer,brazil}
o3 : List
i4 : CIstatements = { {{gender},{hair},{soccer}} }
-- this says gender indep. of hair given soccer
o4 = {{{gender},{hair},{soccer}}}
o4 : List
i5 : conditionalIndependenceIdeal(R,CIstatements,rvNames)

You can compute this online yourself.. The lines starting with “i” are input
lines that you type into the editor to execute them.
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https://www.unimelb-macaulay2.cloud.edu.au/#home


ideal(−p1,2,1,1p2,1,1,1 − p1,2,1,2p2,1,1,1 − p1,2,1,1p2,1,1,2 − p1,2,1,2p2,1,1,2 +
p1,1,1,1p2,2,1,1 + p1,1,1,2p2,2,1,1 + p1,1,1,1p2,2,1,2 + p1,1,1,2p2,2,1,2,

−p1,2,1,1p3,1,1,1 − p1,2,1,2p3,1,1,1 − p1,2,1,1p3,1,1,2 − p1,2,1,2p3,1,1,2 +
p1,1,1,1p3,2,1,1 + p1,1,1,2p3,2,1,1 + p1,1,1,1p3,2,1,2 + p1,1,1,2p3,2,1,2,

−p2,2,1,1p3,1,1,1 − p2,2,1,2p3,1,1,1 − p2,2,1,1p3,1,1,2 − p2,2,1,2p3,1,1,2 +
p2,1,1,1p3,2,1,1 + p2,1,1,2p3,2,1,1 + p2,1,1,1p3,2,1,2 + p2,1,1,2p3,2,1,2,

−p1,2,2,1p2,1,2,1 − p1,2,2,2p2,1,2,1 − p1,2,2,1p2,1,2,2 − p1,2,2,2p2,1,2,2 +
p1,1,2,1p2,2,2,1 + p1,1,2,2p2,2,2,1 + p1,1,2,1p2,2,2,2 + p1,1,2,2p2,2,2,2,

−p1,2,2,1p3,1,2,1 − p1,2,2,2p3,1,2,1 − p1,2,2,1p3,1,2,2 − p1,2,2,2p3,1,2,2 +
p1,1,2,1p3,2,2,1 + p1,1,2,2p3,2,2,1 + p1,1,2,1p3,2,2,2 + p1,1,2,2p3,2,2,2,

−p2,2,2,1p3,1,2,1 − p2,2,2,2p3,1,2,1 − p2,2,2,1p3,1,2,2 − p2,2,2,2p3,1,2,2 +
p2,1,2,1p3,2,2,1 + p2,1,2,2p3,2,2,1 + p2,1,2,1p3,2,2,2 + p2,1,2,2p3,2,2,2)

Class work:
Determine why these are correct. worksheet 2.

11 / 18



Homework 1, problem 3 [due today]

Figure 2: From the Lectures on Algebraic Statistics book
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Algebraic varieties and polynomial ideals
We have already seen these in Lecture 1, and in homework 1
(problem 4). Here is a brief overview of what you need to know.

A variety is the solution set to a simultaneous system of polynomial
equations.
If I is an ideal2, then V (I) is the variety defined by the vanishing of all
polynomials in I.
Hilbert basis theorem: even if I is infinite (it is!), there exists a finite
basis for every I.

Important questions for statistics [digest next 2 slides]:
what are points in a variety?
how do you check if a point is on a variety?
what if you are given an observation of 3 binary random variables, can
you use polynomials to check some CI statements?

2an ideal is the infinite set of polynomial combination of some generating set.
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Recall Example 1.1.2 from the book: 3-step Markov chain.

pijk = P(X1 = i , X2 = j , X3 = k) and P(X3 = k|X1 = i , X2 = j) = pijk
pij+

.

You verified that a probability distribution, represented by a vector of
probabilities p = (p000, p001, p010, p011, p100, p101, p110, p111) ∈ R8, being in
this model is equivalent to the following four conditions:

pijk ≥ 0 for all i , j , k ∈ {0, 1},
∑
i ,j,k

pijk = 1,

p000p101 − p001p100 = 0, and p010p111 − p011p110 = 0.

In this example: what is the variety?

Is the point (1/8, 1/8, . . . , 1/8) on this variety? (That is, is this joint
probability vector in the model?)

[Verify right now, by hand.]
Find an example of a point on the variety, which is a point in this
model.

[Discussion of HW 1.b).]
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Varieties
Points on the model ↔ points on the variety.

What are model ideals?
If p000p101 − p001p100 = 0 and p010p111 − p011p110 = 0 both hold for a
probability vector p = (p000, p001, p010, p011, p100, p101, p110, p111) ∈ R8,
then what other polynomial equations also hold?

All such equations vanish on the points of the model.
[Discussion.]

The (infinite) collection of all of these polynomials is the ideal of this
statistical model.
It is an equivalent description of the model.

[→ algebraic geometry.]

Ideals
The (defining) ideal of a model is the set of all polynomials that
simultaneously vanish on all points in the model.

Luckily, there is a finite basis for each ideal.
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How to combine several CI statements?
Sum of ideals.

Figure 3: From the Lectures on Algebraic Statistics book
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Appendix

Here are some additional examples you may wish to explore, to familiarize
yourself with conditional independence:

This is where the Martin&Normal example came from.
This informal website has some additional interesting examples.
Here is a set of slides with several real-world examples of CI random
variables.
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https://www.eecs.qmul.ac.uk/~norman/BBNs/Independence_and_conditional_independence.htm
https://towardsdatascience.com/conditional-independence-the-backbone-of-bayesian-networks-85710f1b35b
https://www.cs.ubc.ca/~kevinlb/teaching/cs322%20-%202006-7/Lectures/lect25.pdf


License

This document is created for Math/Stat 561, Spring 2023, at Illinois Tech.

The first example is from Kaie Kubjas’ course. Other online sources are
cited throughout.

All materials posted on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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