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Objective

Understand how to translate conditional independence statements into
polynomials, and what these polynomials mean.

Previous lecture: the discrete case.
This lecture: the Gaussian case.

Recall conditional independence (CI) from Lectures 3&4:

Figure 1: Source: Algebraic statistics, Seth Sullivant, AMS-GSM book
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The Gaussian density
A random vector X = (X1, . . . , Xm) has a Gaussian (normal) distribution if

f (x) = 1
(2π)m/2 det Σ1/2 exp

(
−1

2(x − µ)T Σ−1(x − µ)
)

for some µ ∈ Rm and Σ ∈ PDm a positive definite matrix.

P(X ∈ A) =
∫

A f (x)dx for any A ⊆ Rm;
µ is the mean;
Σ−1 is the concentration matrix;
Σ is the covariance matrix.

Marginals
The marginal XA is also a Gaussian: µA = (µi)i∈A and ΣA×A = (Σij)i ,j∈A.

Independence [Proposition 2.4.4 @book]
For disjoint random variables A, B ⊂ [m], XA ⊥⊥ XB if and only if ΣA×B = 0.
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Example (independence)
X1 = delay of your flight to Chicago,
X2 = delay of my flight to Chicago.

With no further information, a reasonable assumption: X1 ⊥⊥ X2.

or not?
Suppose X3 = random variable on amount of rain of our common arrival
day, taking high value.

X1 and X2 are correlated (e.g. both more likely delayed)
this correlation explained by X3
Conditionally on X3 being large: X1, X2 still independent.
Capture this by dividing by the marginal density if X3 to get teh
conditional

Review: definition of conditional density; Theorem 2.4.2 in the book.
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CI for Gaussian random vectors

Proposition [4.1.9. @book]
The CI statement XA ⊥⊥ XB|XC holds for X ∼ N(µ, Σ) if and only if the
submatrix ΣA∪C ,B∪C of the covariance matrix Σ has rank #C.

Proof: see book, page 77!

What is ΣA∪C ,B∪C?

ΣA∪C ,B∪C =
[
ΣA,B ΣA,C
ΣC ,B ΣC ,C

]
.

. . . . How else might we describe this rank condition on this
submatrix?
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Example [4.1.11 @book]
Take two statements: {1 ⊥⊥ 3} and {1 ⊥⊥ 3|2}.
What are the explicit rank conditions?

{1 ⊥⊥ 3}:

{1 ⊥⊥ 3} = {1 ⊥⊥ 3|∅}
ΣA∪C ,B∪C = σ13, yes?
So this 1 × 1 matrix has rank. . . 0.
σ13 = 0.

{1 ⊥⊥ 3|2}:
ΣA∪C ,B∪C = Σ{1,2},{2,3}
so the ? × ? matrix has rank ?. *[Write matrix on board.]*
And is there a polynomial equation for this?
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The model {1 ⊥⊥ 3} and {1 ⊥⊥ 3|2} is defined by two polynomial equations
in the entries of the 3 × 3 covariance matrix Σ. These two equations
generate the conditional independence ideal for this model.

Understanding this system of two equations:

σ13 = 0 and σ13σ22 − σ12σ23 = 0

is equivalent to this system:

σ13 = 0 and σ12σ23 = 0

which is equivalent to the union (“or”) of two linear spaces:

L1 = {Σ : σ13 = σ12 = 0} , L2 = {Σ : σ13 = σ23 = 0}.

Therefore, the variety of the CI model defined by two statements
{1 ⊥⊥ 3} and {1 ⊥⊥ 3|2} splits into a union of these two spaces.

Are there CI statements you can write corresponding to each of L1 and
L2?
Check! L1 characterizes X1 ⊥⊥(X2, X3) and L2 characterizes
X3 ⊥⊥(X1, X2).

What do you conclude? (An implication between CI statements.)
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When there is will, there’s a way.
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Gaussian CI ideal

Definition [4.1.10 @book]
JA ⊥⊥ B|C is the ideal geneated by the following polynomials in the
indeterminates σij , 1 ≤ i ≤ j ≤ m:

JA ⊥⊥ B|C = ((#C + 1) × (#C + 1) minors of ΣA∪C ,B∪C ) .

As before, a collection of CI statements ↔ sum of ideals.

What about the corresponding variety? The Gaussian CI model is:
MA ⊥⊥ B|C = V (JA ⊥⊥ B|C ) ∩ PDm.
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Macaulay2, version 1.18
i1 : loadPackage "GraphicalModels";
i2 : R=gaussianRing 5
o2 = R
o2 : PolynomialRing
i3 : S={{{1},{2},{3,4}}, {{2,3},{1},{5}}}
o3 = {{{1}, {2}, {3, 4}}, {{2, 3}, {1}, {5}}}
o3 : List
i4 : conditionalIndependenceIdeal (R,S) / print;

and the output is:
−s1,4s2,4s3,3 + s1,4s2,3s3,4 + s1,3s2,4s3,4 − s1,2s2

3,4 − s1,3s2,3s4,4 + s1,2s3,3s4,4,

−s1,3s2,5 + s1,2s3,5, −s1,5s2,5 + s1,2s5,5,

−s1,5s3,5 + s1,3s5,5. Task: verify these polynomials are correct!
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Outlook

We will be using these CI statements and ideals when we study causal
discovery algorithms and (discrete and Gaussian) graphical models.
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License

This document is created for Math/Stat 561, Spring 2023, at Illinois Tech.

Main content of these slides is from Thomas Kahle’s tutorial on Gaussian CI
and graphical models. (We have not yet arrived to the part of the book
about graphical models!)

All materials posted on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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https://faculty.math.illinois.edu/Macaulay2/Events/Workshop2017Atlanta-files/Day2/Thomas/GaussianCI.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

