

Conditional independence: the algebra behind the models

“Algebraic & Geometric Methods in Statistics”

Sonja Petrović
Created for Math/Stat 561

Jan 27, 2026.

Objective

Understand how to translate conditional independence statements into polynomials, and what these polynomials mean.

Example Macaulay2 code

```
Macaulay2, version 1.18
i1 : loadPackage "GraphicalModels";
i2 : R = markovRing (3,2,2,2);
o2 = R
o2 : PolynomialRing
i3 : rvNames = {gender,hair,soccer,brazil}
o3 = {gender,hair,soccer,brazil}
o3 : List
i4 : CIstatements = { {{gender},{hair},{soccer}} }
-- this says gender indep. of hair given soccer
o4 = {{gender},{hair},{soccer}}
o4 : List
i5 : conditionalIndependenceIdeal(R,CIstatements,rvNames)
```

You can compute this online yourself.. The lines starting with "i" are input lines that you type into the editor to execute them.

$$\begin{aligned}
& \text{ideal}(-p_{1,2,1,1}p_{2,1,1,1} - p_{1,2,1,2}p_{2,1,1,1} - p_{1,2,1,1}p_{2,1,1,2} - p_{1,2,1,2}p_{2,1,1,2} + \\
& p_{1,1,1,1}p_{2,2,1,1} + p_{1,1,1,2}p_{2,2,1,1} + p_{1,1,1,1}p_{2,2,1,2} + p_{1,1,1,2}p_{2,2,1,2}, \\
& -p_{1,2,1,1}p_{3,1,1,1} - p_{1,2,1,2}p_{3,1,1,1} - p_{1,2,1,1}p_{3,1,1,2} - p_{1,2,1,2}p_{3,1,1,2} + \\
& p_{1,1,1,1}p_{3,2,1,1} + p_{1,1,1,2}p_{3,2,1,1} + p_{1,1,1,1}p_{3,2,1,2} + p_{1,1,1,2}p_{3,2,1,2}, \\
& -p_{2,2,1,1}p_{3,1,1,1} - p_{2,2,1,2}p_{3,1,1,1} - p_{2,2,1,1}p_{3,1,1,2} - p_{2,2,1,2}p_{3,1,1,2} + \\
& p_{2,1,1,1}p_{3,2,1,1} + p_{2,1,1,2}p_{3,2,1,1} + p_{2,1,1,1}p_{3,2,1,2} + p_{2,1,1,2}p_{3,2,1,2}, \\
& -p_{1,2,2,1}p_{2,1,2,1} - p_{1,2,2,2}p_{2,1,2,1} - p_{1,2,2,1}p_{2,1,2,2} - p_{1,2,2,2}p_{2,1,2,2} + \\
& p_{1,1,2,1}p_{2,2,2,1} + p_{1,1,2,2}p_{2,2,2,1} + p_{1,1,2,1}p_{2,2,2,2} + p_{1,1,2,2}p_{2,2,2,2}, \\
& -p_{1,2,2,1}p_{3,1,2,1} - p_{1,2,2,2}p_{3,1,2,1} - p_{1,2,2,1}p_{3,1,2,2} - p_{1,2,2,2}p_{3,1,2,2} + \\
& p_{1,1,2,1}p_{3,2,2,1} + p_{1,1,2,2}p_{3,2,2,1} + p_{1,1,2,1}p_{3,2,2,2} + p_{1,1,2,2}p_{3,2,2,2}, \\
& -p_{2,2,2,1}p_{3,1,2,1} - p_{2,2,2,2}p_{3,1,2,1} - p_{2,2,2,1}p_{3,1,2,2} - p_{2,2,2,2}p_{3,1,2,2} + \\
& p_{2,1,2,1}p_{3,2,2,1} + p_{2,1,2,2}p_{3,2,2,1} + p_{2,1,2,1}p_{3,2,2,2} + p_{2,1,2,2}p_{3,2,2,2})
\end{aligned}$$

Class work:

Determine why these are correct. [worksheet 2](#).

Homework 1, problem 3 [due soon!]

Example 3.1.6 (Marginal independence). The (marginal) independence statement $X_1 \perp\!\!\!\perp X_2$, or equivalently, $X_1 \perp\!\!\!\perp X_2 | X_\emptyset$, amounts to saying that the matrix

$$\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1r_2} \\ p_{21} & p_{22} & \cdots & p_{2r_2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{r_1 1} & p_{r_1 2} & \cdots & p_{r_1 r_2} \end{pmatrix}$$

has rank one. The independence ideal $I_{1 \perp\!\!\!\perp 2}$ is generated by the 2×2 -minors:

$$I_{1 \perp\!\!\!\perp 2} = \langle p_{i_1 i_2} p_{j_1 j_2} - p_{i_1 j_2} p_{i_2 j_1} \mid i_1, j_1 \in [r_1], i_2, j_2 \in [r_2] \rangle.$$

For marginal independence, we already saw these quadratic binomial constraints in Chapter 1. □

Figure 1: From the Lectures on Algebraic Statistics book

Algebraic varieties and polynomial ideals

We have already seen these in Lecture 1, and in homework 1 (problem 4). Here is a brief overview of what you need to know.

- A **variety** is the solution set to a simultaneous system of polynomial equations.
- If I is an **ideal**¹, then $V(I)$ is the variety defined by the vanishing of *all* polynomials in I .
- Hilbert basis theorem: even if I is infinite (it is!), there exists a **finite basis** for every I .

Important questions for statistics [digest next 2 slides]:

- what are points in a variety?
- how do you check if a point is on a variety?
- what if you are given an observation of 3 binary random variables, can you use polynomials to check some CI statements?

¹an *ideal* is the infinite set of polynomial combination of some generating set.

Recall [Example 1.1.2](#) from the book: 3-step Markov chain.

$p_{ijk} = P(X_1 = i, X_2 = j, X_3 = k)$ and $P(X_3 = k | X_1 = i, X_2 = j) = \frac{p_{ijk}}{p_{ij+}}$.

You verified that a probability distribution, represented by a vector of probabilities $p = (p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}) \in \mathbb{R}^8$, being in this model is *equivalent to* the following four conditions:

$$p_{ijk} \geq 0 \text{ for all } i, j, k \in \{0, 1\}, \quad \sum_{i,j,k} p_{ijk} = 1,$$

$$p_{000}p_{101} - p_{001}p_{100} = 0, \text{ and } p_{010}p_{111} - p_{011}p_{110} = 0.$$

- In this example: **what is the variety?**

Recall [Example 1.1.2](#) from the book: 3-step Markov chain.

$p_{ijk} = P(X_1 = i, X_2 = j, X_3 = k)$ and $P(X_3 = k | X_1 = i, X_2 = j) = \frac{p_{ijk}}{p_{ij+}}$.

You verified that a probability distribution, represented by a vector of probabilities $p = (p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}) \in \mathbb{R}^8$, being in this model is *equivalent to* the following four conditions:

$$p_{ijk} \geq 0 \text{ for all } i, j, k \in \{0, 1\}, \quad \sum_{i,j,k} p_{ijk} = 1,$$

$$p_{000}p_{101} - p_{001}p_{100} = 0, \text{ and } p_{010}p_{111} - p_{011}p_{110} = 0.$$

- In this example: **what is the variety?**
- Is the point $(1/8, 1/8, \dots, 1/8)$ **on** this variety? (That is, **is this joint probability vector in the model?**)
 - [Verify right now, by hand.]

Recall [Example 1.1.2](#) from the book: 3-step Markov chain.

$p_{ijk} = P(X_1 = i, X_2 = j, X_3 = k)$ and $P(X_3 = k | X_1 = i, X_2 = j) = \frac{p_{ijk}}{p_{ij+}}$.

You verified that a probability distribution, represented by a vector of probabilities $p = (p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}) \in \mathbb{R}^8$, being in this model is *equivalent to* the following four conditions:

$$p_{ijk} \geq 0 \text{ for all } i, j, k \in \{0, 1\}, \quad \sum_{i,j,k} p_{ijk} = 1,$$

$$p_{000}p_{101} - p_{001}p_{100} = 0, \text{ and } p_{010}p_{111} - p_{011}p_{110} = 0.$$

- In this example: **what is the variety?**
- Is the point $(1/8, 1/8, \dots, 1/8)$ **on** this variety? (That is, **is this joint probability vector in the model?**)
 - [Verify right now, by hand.]
- Find an example of a point on the variety, which is a point in this model.
 - [Discussion of HW 1.b).]

Points on the model \leftrightarrow points on the variety.

What are model *ideals*?

If $p_{000}p_{101} - p_{001}p_{100} = 0$ and $p_{010}p_{111} - p_{011}p_{110} = 0$ both hold for a probability vector $p = (p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}) \in \mathbb{R}^8$, then **what other polynomial equations also hold?**

Points on the model \leftrightarrow points on the variety.

What are model *ideals*?

If $p_{000}p_{101} - p_{001}p_{100} = 0$ and $p_{010}p_{111} - p_{011}p_{110} = 0$ both hold for a probability vector $p = (p_{000}, p_{001}, p_{010}, p_{011}, p_{100}, p_{101}, p_{110}, p_{111}) \in \mathbb{R}^8$, then **what other polynomial equations also hold?**

- All such equations vanish on the points of the model.
 - [Discussion.]
- The (infinite) collection of all of these polynomials is **the ideal of this statistical model**.
- It is an equivalent description of the model.
 - [→ algebraic geometry.]

Ideals

The (defining) ideal of a model is the set of all polynomials that simultaneously vanish on all points in the model.

Luckily, there is a finite basis for each ideal.

How to combine several CI statements?

Sum of ideals.

Example 3.1.10. Let X_1, X_2, X_3, X_4 be binary random variables, and consider the conditional independence model

$$\mathcal{C} = \{1 \perp\!\!\!\perp 3 \mid \{2, 4\}, 2 \perp\!\!\!\perp 4 \mid \{1, 3\}\}.$$

These are the conditional independence statements that hold for the graphical model associated to the four cycle graph with edges $\{12, 23, 34, 14\}$; see Section 3.2. The conditional independence ideal is generated by eight quadratic binomials:

$$\begin{aligned} I_{\mathcal{C}} &= I_{1 \perp\!\!\!\perp 3 \mid \{2, 4\}} + I_{2 \perp\!\!\!\perp 4 \mid \{1, 3\}} \\ &= \langle p_{1111}p_{2121} - p_{1121}p_{2111}, p_{1112}p_{2122} - p_{1122}p_{2112}, \\ &\quad p_{1211}p_{2221} - p_{1221}p_{2211}, p_{1212}p_{2222} - p_{1222}p_{2212}, \\ &\quad p_{1111}p_{1212} - p_{1112}p_{1211}, p_{1121}p_{1222} - p_{1122}p_{1221}, \\ &\quad p_{2111}p_{2212} - p_{2112}p_{2211}, p_{2121}p_{2222} - p_{2122}p_{2221} \rangle. \end{aligned}$$

Figure 2: From the Lectures on Algebraic Statistics book

Appendix

Here are some additional examples you may wish to explore, to familiarize yourself with conditional independence:

- [This](#) is where the Martin&Normal example came from.
- This informal [website](#) has some additional interesting examples.
- [Here is a set of slides](#) with several real-world examples of CI random variables.

License

This document is created for Math/Stat 561, Spring 2023 (2026 update), at Illinois Tech.

The first example is from Kaie Kubjas' course. Other online sources are cited throughout.

All materials posted on this page are licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](#).