Statistics primer \& exponential families

"Algebraic \& Geometric Methods in Statistics"

Sonja Petrović
Created for Math/Stat 561

Jan 30, 2023.

Objective

- Review some statistics fundamentals;
- understand the setup of exponential families.

Material:

Sourced from chapters 5 ("Statistics primer") and 6 ("exponential families") of the textbook. Other resources provided in subsequent links.

Parametric models: self-review

- What is a parametric statistical model?
- What is an implicit statistical model?
- What does it mean for random variables X_{1}, \ldots, X_{n} to be iid (independent and identically distributed)?
- What does it mean for random variables to be exchangable?
- What is an iid sample?

Task:
Look up, write down, and adopt these definitions.
See Sections 5.1. and 5.2. of the textbook (handout).

The running example

Example 5.3.2.: Binomial random variable: $r+1$ states, $0, \ldots, r$.

- The model consists of all distributions of the form

$$
\left\{\left(\pi^{r}, r \pi^{r-1}(1-\pi), \ldots,(1-\pi)^{r}\right): \pi \in[0,1]\right\}
$$

In other words, the model is the set $\left\{p_{\pi}\right\} \subset \mathbb{R}^{r+1}$ where each p_{π} has the above form.

- Data collected from an $*_{i i d}{ }^{*}$ sample of size $n: X^{(1)}, \ldots, X^{(n)}$, from an underlying distribution $p_{\pi_{0}}$.
- π_{0} is the unknown but fixed parameter we would like to estimate using the data.

Statistics vs. parameters

Parameter [Definition 5.3.1.]
Let \mathcal{M}_{θ} be a parametric statistical model with parameter space Θ. A parameter of a statistical model is a function $s: \Theta \rightarrow \mathbb{R}$.

Statistic [Definition 5.1.5.]
A statistic is a function from the state space to some other set.

- A statistic $T(X)$ is sufficient for the model if $P(X=x \mid T(X)=t, \theta)=P(X=x \mid T(X)=t)$.

Estimator [Definition 5.3.1.]
An estimator $\hat{\theta}$ is a function from the data space D to \mathbb{R}.

- An estimator is consistent if $\hat{\theta} \rightarrow_{p} \theta$. \leftarrow it converges to the true parameter as the sample size $\rightarrow \infty$.
- There are many ways to compute an estimator.

Number of heads: $\mathrm{pi=7/8}$

Three simulations, one parametric model, one unknown parameter
\rightarrow The parametric model: $\operatorname{Bin}(10000, \pi)$

- Histogram 1: data simulated with $\pi=1 / 2$.
- Histogram 2: data simulated with $\pi=1 / 4$.
- Histogram 3: data simulated with $\pi=7 / 8$.

What is the parameter estimation problem on this example?
Write it out.
(What is X, θ or π, r, n, a statistic, an estimator of a parameter?)

The parameter estimation problem

- There are many ways to compute estimatores.
- See Math 563, for starters; Method of moments, for example
- READ Examples in the book re: binomial r.v.: 5.3.2, 5.3.4, 5.3.6.

Maximum likelihood estimation [Defn. 5.3.5.]
Let D be data from some model w/ parameter space Θ. Likelihood function:

$$
L(\theta \mid D):=p_{\theta}(D) \text { or } L(\theta \mid D):=f_{\theta}(D)
$$

- L is a function of the parameter(s)! Data is fixed in the likelihood function.
The maximum likelihood estimate (MLE) $\hat{\theta}$ is the maximizer of the likelihood function:

$$
\hat{\theta}=\arg \max _{\theta \in \Theta} L(\theta \mid D)
$$

- MLE $=$ the particular value $\hat{\theta}$ of the parameter that makes D most likely to have been observed udner the model.

Let's look at the Binomial example again.

- The data $D=X^{(1)}, \ldots, X^{(n)}$ is summarized by a vector of counts $u=\left(u_{0}, \ldots, u_{r}\right)$, where $u_{i}=|\{j: X(j)=i\}|$.
- In the case of discrete data, this likelihood function is thus only a function of the vector of counts u :

$$
L(\theta \mid D)=\prod_{j} p_{\theta}(j)^{u_{j}}
$$

* It is common to study the log-likelihood function $\ell(\theta \mid D)=\log L(\theta \mid D)$.

Binomial likelihood
Go over Example 5.3.6.

- What is the likelihood function?
- What is the MLE?

MLE for $\mathcal{M}_{1 \Perp 2}$.

Go over Proposition 5.3.8. and proof.

Other resources

- Check out this lovely tutorial on MLE by Prof. Andrew Moore.
- Larry Wasserman's intermediate statistics notes on likelihood and sufficiency: read this and this.

License

This document is created for Math/Stat 561, Spring 2023, at Illinois Tech. All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

