week 5 day 1

"Algebraic \& Geometric Methods in Statistics"

Sonja Petrović
Created for Math/Stat 561

Feb 6, 2023.

Recap: Exponential families

- An exponential family is a parametric statistical model with probability distributions of a certain form.
- General enough to include many of the most common families of probability distributions:
- multivariate normal
- exponential
- Poisson
- binomial (with fixed number of trials)
- Specific enough to have nice properties:
- likelihood function is strictly concave [next lecture]
- have conjugate priors.

Recap: Discrete exponential families

Notation

- X a discrete random variable $X \in[r]$.
- $T(x)=a_{x}$, writing as a vector: $a_{x}=\left(a_{1 x}, \ldots, a_{k x}\right)^{t}$. Assume $a_{j x} \in \mathbb{Z}$.
- $h(x)=h_{x}$, so $h=\left(h_{1}, \ldots, h_{r}\right)$ is also a vector (of positive real numbers)
- $\eta=\left(\eta_{1}, \ldots, \eta_{k}\right)^{t}$ and
$\theta_{i}=\exp \eta_{i}$.

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{i} \theta_{i}^{a_{i x}}
$$

- The design matrix:

$$
\mathcal{A}=\left(a_{j x}\right)_{j \in[k], x \in[r]} \in \mathbb{Z}^{k \times r} .
$$

- For each value x of X, the monomial $\prod_{j} \theta_{j}^{a_{j x}} \leftrightarrow$ a column of \mathcal{A}.

Design matrix recipe
Columns of \mathcal{A} are exponents of the parametrization of each given state.

Question from the previous lecture

- Consider the model $p_{i j}=\alpha_{i} \beta_{j}$ for $i \in[2]$ and $j \in[2]$.

Question from the previous lecture

- Consider the model $p_{i j}=\alpha_{i} \beta_{j}$ for $i \in[2]$ and $j \in[2]$. Binary independent random variables.
- The design matrix is

$$
\mathcal{A}=\begin{gathered}
\alpha_{1} \\
\alpha_{2} \\
\beta_{1} \\
\beta_{2}
\end{gathered}\left(\begin{array}{cccc}
p_{11} & p_{12} & p_{21} & p_{22} \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Finally, the vector $h=[1,1,1,1]^{t}$.
\rightarrow I assume that each of you has completed this example for not 2×2 but $r_{1} \times r_{2}$ by hand, by now.

In this lecture

- log-affine models
- what to do with the h function in the parametrization of an exponential family model (nothing!)
- is there an "easy" way to compute the implicitization of all discrete exponential families?

Log-affine, log-linear discrete exponential families

- Let $\mathcal{A}=\left[a_{j x}\right]_{j \in[k], x \in[r]} \in \mathbb{Z}^{k \times r}$ be a design matrix.

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{i} \theta_{i}^{a_{i x}} .
$$

- The logarithm of the exponential family model $p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{i} \theta_{i}^{a_{i x}}$ is

Log-affine, log-linear discrete exponential families

- Let $\mathcal{A}=\left[a_{j x}\right]_{j \in[k], x \in[r]} \in \mathbb{Z}^{k \times r}$ be a design matrix.

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{i} \theta_{i}^{a_{i x}} .
$$

- The logarithm of the exponential family model $p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{i} \theta_{i}^{a_{i x}}$ is

$$
\log p_{\theta}(x)=\log h_{x}+\sum_{j} a_{j x} \log \theta_{j}-\log Z(\theta)
$$

- Assume \mathcal{A} contains the vector $1=(1, \ldots, 1)$ in the rowspan, then this is equivalent to requiring that $\log p$ belongs to the affine space $\log (h)+$ rowspan (A).
... "equivalent to requiring that $\log p$ belongs to the affine space $\log (h)+\operatorname{rowspan}(A) . "$

Definition

Definition 6.2.1. Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in$ $\operatorname{rowspan}(A)$ and let $h \in \mathbb{R}_{>0}^{r}$. The log-affine model associated to these data is the set of probability distributions

$$
\mathcal{M}_{A, h}:=\left\{p \in \operatorname{int}\left(\Delta_{r-1}\right): \log p \in \log h+\text { rowspan }(A)\right\} .
$$

If $h=\mathbf{1}$, then $\mathcal{M}_{A}=\mathcal{M}_{A, 1}$ is called a log-linear model.
Figure 1: Source: textbook

Ideal of a log-linear model

The log-affine model $\mathcal{M}_{\mathcal{A}, h}$ given by design matrix \mathcal{A} and vector h :

$$
p_{\theta}(x) \propto h_{x} \prod_{i} \theta_{i}^{a_{i x}}
$$

- This is a model for the joint distribution for discrete random variables, whose states we may denote by $\{1, \ldots, r\}$. So the model is a parametric form of the joint probabilities p_{1}, \ldots, p_{r}.
- $\mathcal{M}_{\mathcal{A}, h}$ is the set of all joint probability vectors $\left(p_{1}, \ldots, p_{r}\right)$ of the above form.
- The indeterminates p_{i} index the columns of the matrix \mathcal{A}.

Definition [Cf. 6.2.2. \& 6.2.3. in the book]
The toric ideal of the model $\mathcal{M}_{\mathcal{A}, h}$ is the ideal $I_{\mathcal{A}, h}$ of the variety parametrized by $\left(p_{1}, \ldots, p_{r}\right)$. If $h=[1, \ldots, 1]$, we denote this as $I_{\mathcal{A}}$.

Proposition 6.2.4. Let $A \in \mathbb{Z}^{k \times r}$ be a $k \times r$ matrix of integers. Then the toric ideal I_{A} is a binomial ideal and

$$
I_{A}=\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{r} \text { and } A u=A v\right\rangle
$$

If $\mathbf{1} \in \operatorname{rowspan}(A)$, then I_{A} is homogeneous.
Figure 2: Proposition 6.2.4. from textbook

Class work: Before going into the proof, decipher:

- What is the definition of I_{A}, and what is really the claim in this proposition that needs to be proved?
- What is u ? $\left(u \in \mathbb{N}^{r} \ldots\right)$ What is A ? $\left(A \in \mathbb{Z}^{k \times r} \ldots\right)$
- What is $A u$? example, meaning?
- What does p^{u} mean?

Proof.

On the board, draw out steps of "peeling terms" of any $f \in I_{A}$ one binomial at a time. Using ideas from page 123 of the book.

Remark on generality

We defined $I_{\mathcal{A}, h}$ and I_{A}. The proposition only defines the binomial ideal I_{A}.

- Why?? What happens to general h ?
- Good news: Generators for the toric ideal $I_{\mathcal{A}, h}$ are easily obtained from generators of the toric ideal $I_{\mathcal{A}}$, by globally making the substitution $p_{j} \mapsto p_{j} / h_{j}$. Hence, it is sufficient to focus on the case of the toric ideal $I_{\mathcal{A}}$.
- All of these ideals I_{A} turn out to be binomial ideals; the proposition tells us which particular binomials to look for.
- ... and what is a "binomial ideal"? [Board as needed.]

Example: Binomial with 3 trials [Ex. 6.2.5.]
Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=$?,$r=$?

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=?, r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=?, r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.
- So the vector of joint probabilities is $p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$.
- What do columns of \mathcal{A} represent?

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=?, r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.
- So the vector of joint probabilities is $p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$.
- What do columns of \mathcal{A} represent?

$$
p_{1}=\theta_{2}^{3}, p_{2}=\theta_{1} \theta_{2}^{2}, p_{3}=\theta_{1}^{2} \theta_{2}, p_{4}=\theta_{1}^{3}
$$

- What is an example of p^{u} ?

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=$?, $r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.
- So the vector of joint probabilities is $p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$.
- What do columns of \mathcal{A} represent?

$$
p_{1}=\theta_{2}^{3}, p_{2}=\theta_{1} \theta_{2}^{2}, p_{3}=\theta_{1}^{2} \theta_{2}, p_{4}=\theta_{1}^{3}
$$

- What is an example of p^{u} ? \rightarrow Say, $u=(0,2,0,0)^{t}$. Then $p^{u}=p_{2}^{2}$.

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=$?, $r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.
- So the vector of joint probabilities is $p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$.
- What do columns of \mathcal{A} represent?

$$
p_{1}=\theta_{2}^{3}, p_{2}=\theta_{1} \theta_{2}^{2}, p_{3}=\theta_{1}^{2} \theta_{2}, p_{4}=\theta_{1}^{3} .
$$

- What is an example of p^{u} ? \rightarrow Say, $u=(0,2,0,0)^{t}$. Then $p^{u}=p_{2}^{2}$.
- What is $\mathcal{A} u$ in this case?

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=$?, $r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.
- So the vector of joint probabilities is $p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$.
- What do columns of \mathcal{A} represent?

$$
p_{1}=\theta_{2}^{3}, p_{2}=\theta_{1} \theta_{2}^{2}, p_{3}=\theta_{1}^{2} \theta_{2}, p_{4}=\theta_{1}^{3} .
$$

- What is an example of p^{u} ? \rightarrow Say, $u=(0,2,0,0)^{t}$. Then $p^{u}=p_{2}^{2}$.
- What is $\mathcal{A} u$ in this case? $\rightarrow \mathcal{A} u$ is the value of the sufficient statistic in this exponential family. HW: verify that this is sufficient for the binomial model.
- Can you come up with v such that $A u=A v$?

Example: Binomial with 3 trials [Ex. 6.2.5.]

Let $\mathcal{A}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right]$.

- $k=$?, $r=$? $\rightarrow k=4, r=2$. There are 4 joint outcomes, and 2 parameters.
- So the vector of joint probabilities is $p=\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$.
- What do columns of \mathcal{A} represent?

$$
p_{1}=\theta_{2}^{3}, p_{2}=\theta_{1} \theta_{2}^{2}, p_{3}=\theta_{1}^{2} \theta_{2}, p_{4}=\theta_{1}^{3}
$$

- What is an example of p^{u} ? \rightarrow Say, $u=(0,2,0,0)^{t}$. Then $p^{u}=p_{2}^{2}$.
- What is $\mathcal{A} u$ in this case? $\rightarrow \mathcal{A} u$ is the value of the sufficient statistic in this exponential family. HW: verify that this is sufficient for the binomial model.
- Can you come up with v such that $A u=A v$? $\backslash \operatorname{attn}\left\{\rightarrow v=(1,0,1,0)^{t}\right.$.
- The corresponding binomial is $p_{1} p_{3}-p_{2}^{2}$.
- VERIFY that this binomial evaluates to 0 at all points in the model ${ }_{11 / 17}$

Example 6.2.6. - class \& board work

The model of independence of two discrete random variables. Say that $r_{1}=4$ and $r_{2}=3$.

- What is the parametrization of the model?
- What is the design matrix \mathcal{A} ?
- From an observed table of counts u (which format is the table in, by the way??), what does $A u$ compute?
- Find some generators of the toric ideal I_{A} by hand. Interpet them.
- How do you know when you have all binomials that suffice to capture (generate) the entire ideal of the model?
- ... That's the million dollar question!

Self-study

- We leave 6.2 .7 for self-study and reading at your own pace.
- This is good/useful for homework 2.
- You should try the following Macaulay2 code for computing ideal generators of $I_{\mathcal{A}}$ from the matrix \mathcal{A} - see next slide.
- Try it on your examples as well as the class examples.

14 : loadPackage "FourTiTwo";
i15 : A = matrix" $3,2,1,0 ; 0,1,2,3 "$
o15 = $\left|\begin{array}{lllll}\mid & 3 & 2 & 1 & 0 \\ \mid & 0 & 1 & 2 & 3\end{array}\right|$
2
4
o15 : Matrix ZZ <--- ZZ
i16 : toricMarkov A -- I_A generators: vector format
$016=\left|\begin{array}{lllll}\mid & 0 & 1 & -2 & 1 \\ \mid & 1 & -2 & 1 & 0\end{array}\right|$
34
o16 : Matrix ZZ <--- ZZ
i17 : R=QQ[p_1,p_2,p_3,p_4];
i18 : toricMarkov(A,R) -- I_A generators: polynomial format 22
o18 = ideal $\left(-\mathrm{p}_{3}+\underset{24}{\mathrm{p}} \mathrm{p},-\underset{2}{\mathrm{p}}+\underset{13}{\mathrm{p}} \mathrm{p},-\underset{23}{\mathrm{p}} \mathrm{p}+\underset{14}{\mathrm{p}} \mathrm{p}\right)$
o18 : Ideal of R

Next up:

How to use implicit models for likelihood inference.

- next topic: likelihood inference from ch7,

Course timeline update

- Your project presentations will take place during week 13.
- Each day $=10$ students
- 10 students $=$ between 2 and 5 projects
- \Longrightarrow each student gets 7 minutes of time at the board/slides:
- 4 minutes presentation,
- followed by 3 minutes Q\&A.

If anyone wishes to do this Wed of Week 12 instead, please do let me know.

License

This document is created for Math/Stat 561, Spring 2023.
All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

