
week 5 day 2
“Likelihood Geometry & Intro to exact testing for log-linear models”

“Algebraic & Geometric Methods in Statistics”

Sonja Petrović
Created for Math/Stat 561

Feb 8, 2023.

1 / 22



Related readings

Chapter 7 from our textbook.

Goals
Understand examples
Understand counting the number of solutions
See how it all plays out in the discrete exponentail family case.
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Likelihood geometry
Recap: Likelihood inference

Figure 1: Example of score equtions
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Discrete setup
Parametric model given by a rational map p : Θ → ∆r−1
iid samples X (1),X (2), . . . ,X (n) such that X (i) ∼ p for some unknown
p
The vector of counts u ∈ Nr , with uj = |{i : X (i) = j}|
Log-likelihood function ℓ(θ|u) =

∑r
j=1 uj log pj

Score equations
∑r

j=1
uj
pj

dpj
dθi

. One equation for each θi .

Theorem & Definition
Let M ⊆ ∆r−1 be a statistical model. For generica data, the number of
solutions to the score equations is independent of u.
The number of solutions to the score equations for generic u is called the
maximum likelihood degree (ML degree) of the parametric discrete
statistical model M.

a‘sufficiently random’, outside a variety

Computational algebra is really good at coutning the number of solutions to
a system of polynomial/rational equations!!
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Implicit models

Problem
Given vector of counts u, we would like to maximize the log-likelihood
function ℓ(θ|u) =

∑r
j=1 uj log pj over the intersection of the interior of the

probability simplex ∆r−1 and the variety V(polynomials defining the model).

Example

MX ⊥⊥ Y = {
[
p11 p12
p21 p22

]
∈ ∆3 : p11p22 − p12p21 = 0} and u =

[
19 141
17 149

]
.

Maximize ℓ(p|u) = 19 log p11 + 141 log p12 + 17 log p21 + 149 log p22
over MX ⊥⊥ Y .
The polynomial constraints are p11 + p12 + p21 + p22 = 1 and
p11p22 − p12p21 = 0.

→ Go to lecture9-interlude-LangrangeMultipliers.pdf
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Exponential families have concave likelihood functions
Proposition
Let M be an exponential family with minimal sufficient statistics T (x) and
natural parameter η. (fη(x) = h(x)eηtT (x)−A(η).) Then the likelihood
function is strictly concave.

The MLE, if it exists, is the solution to T (x) = Eη[T (X )].
x denotes the data vector.

iid samples =⇒ sufficient statistic of the sample is
Tn(X (1), . . . ,X (n)) =

∑n
i=1 T (X (i)).

Figure 2: Source: Carlos Amendola
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Example: ML degree of (rescaled) binomial is 3

Figure 3: Source: Carlos Amendola
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ML for discrete expo fam.

Figure 4: Source: Carlos Amendola 8 / 22



Corollary [Birch’s theorem]
Let A ⊆ Zk×r such that 1 ∈ rowspan(A). Let u be a vector of counts from
iid samples. Then the MLE of the log-linear model is the unique solution, if
it exists, to

Au = nAp and p ∈ MA.

Inspires algorithms for computing MLE:
Iterative proportional fitting. Stephen Fienberg, AMS 1970.

R can do this - it’s super fast
some resources at end of these slides
IPF is usually embedded inside other functions

fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))

5 iterations: deviation 0.04093795

## fm
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https://www.jstor.org/stable/2239244


The following problem will appear on HW 3

exercise 7.2. in the book

Let M be the model of binomial random variables Bin(2, θ):

M = {(1 − θ)2, 2θ(1 − θ), θ2) ∈ ∆2 : θ ∈ (0, 1)}.

What is the ML degree of M?
Compute the MLE θ̂ for the two data points u = (8, 6, 5) and
v = (4, 20, 8). Interpret your results
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Interlude: log-linear models Campuswire post #37.
Did anyone try and succeed to write out what it means that "log(p) is in
the rowspan(A)" for the example of the independence model?

{
width = 60% }

11 / 22



Interlude: log-linear models Campuswire post #37.

{
width = 60% }
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Answer by Miles:

In general (from slide 13 or lec. 7):

pθ = 1
Z(θ)h

∏
j θ

aj where aj is the jth row of A ∈ Z k×r .

If pθ ∈ int(△R−1) then (1, . . . , 1) = 1 ∈ rowspan(A) i.e. 1 = cA for some
vector c ∈ Zr

Assume h = 1. Then log pθ = log(h) − log(Z (θ))1 +
∑

j aj log θ
= 0 − log(Z(θ))cA + log θA = (− log(Z (θ))c + log θ) A

Here − log(Z (θ))c + log θ is just a vector, in Rr so this means
log pθ ∈ rowspan(A)
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Exact testing!

this is our next topic!!

Last slide from likelihood geometry said: “IPF is usually embedded
inside other functions”

. . . which begs the question: What other questions might we have??

The following few slides are a preview of our next topic.
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Is the given set of shareowning relations expected or not?

Figure 5: A graphical representation of the Japanese Corporate Network from the
NYT article.
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Are degrees a good summary of a network?
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At the heart of statistical reasoning
Given: data, find out if it is usual/expected? surprising/outlier?
quantify??

Do all genders get fair salary in Tirana?

Obtain some
salary data

Break data down
by gender

Hope salary
independent

of gender

We expect a certain ‘shape’ of the data. A certain. . . distribution!
YOUR everyday intuition 7→ formal
framework.

Figure 6: Small table format
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A simple search: Chicago data science salary data
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Formal reasoning with data: independence example

Modeling: Construct a statistical model for independence.

Question: Does the model fit the observed set of gender vs. salary
ranges?

(Can it adequately explain how the salary data was generated?)

Process:

Assume salary is in-
dependent of gender

Observe a classifi-
cation of genders
by salary range

Not unusual?
Model of indepen-
dence fits the data

Unusual? Model
of independnece

does not fit the data
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Models with a design matrix
X1, . . . ,Xk discrete random variables, Xi ∈ {1, . . . , di}
u = a k-way contingency table u ∈ Zd1×···×dk

≥0 [Draw a table!] Flatten u to vector.

Log-linear model
Sufficient statistics = marginals of u: Pθ(U = u) = exp{⟨Au, θ⟩ − ψ(θ}.

Example X1 ⊥⊥ X2



1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1

1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1


(d1+d2)×d1d2

·

[ u11
...

ud1d2

]
=

[
u1+ . . . u+d2

]
.
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Conclusions

Main take-aways about likelihood geometry
Numerical algorithms for computing MLE, for example the EM algoritm
implemented widely, are usually some form of hill-climbing. They have
no way of telling you whether you are at a global or local optimum.
Likelihood function in exponential families is strictly concave

However there can be local optima on the boundary of the model
When you compute estimates numerically, it is a good idea to
understand how many critical points there are

You can set up the system of score equations
You can count the number of (complex) solutions to those equations

This quantity, called the ML degree in algebraic statisitcs, is one
measure of complexity of estimation.

ML degree is one if and only if the MLE formula is a rational function
of the data.

Birch’s theorem.
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Additional material

Here is a vignette about how IPF algorithm works in R.
In python, I have not used this, but found this link which appears to
be useful: IPF in python
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https://cran.r-project.org/web/packages/surveysd/vignettes/ipf.html
https://datascience.oneoffcoder.com/ipf.html


License

Parts of this presentation are from Kaie Kubjas’ course lectures, used with
permission; and Carlos Amendola’s lecture in Bernd Sturmfel’s short course
on Algebraic Statistics in Berlin, fall 2022.

This document is created for Math/Stat 561, Spring 2023.

All materials posted on this page are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
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