Math 561 Worksheet 3

Group members:

6 February 2023.

1. The design matrix and log-linear models

Consider the model $p_{i j}=\alpha_{i} \beta_{j}$ for $i \in[2]$ and $j \in[2]$. This is the model of binary independent random variables. The design matrix is $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$. What is the analogous matrix B for the model of independence of two random variables with $X_{1} \in[2]$ and $X_{2} \in[3]$?

2. Rowspan and points in the model

- Give an example of an element in the vector space $\operatorname{rowspan}(B)$ for the matrix B in the previous problem.
- Pick a value of the parameter vector $\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \beta_{3}\right]$ and write the corresponding point $p=$ $\left[p_{11}, p_{12}, p_{13}, p_{21}, p_{22}, p_{23}\right]$ in the model $\mathcal{M}_{X_{1} \Perp X_{2}}$.
- Verify whether $\log p$, for this particular point p, is the the row span of the design matrix B for the model.

3. MLE for a log-linear model

Continue exploring the model $\mathcal{M}_{X_{1} \Perp X_{2}}$ with X_{1} binary and X_{2} ternary.
Suppose the observed data count table is:

$$
u=\left[\begin{array}{ccc}
1 & 10 & 100 \\
100 & 10 & 1
\end{array}\right] .
$$

- What is the MLE for this data table u ?
- Does the MLE belong in the model $\mathcal{M}_{X_{1} \Perp X_{2}}$? How certain are you of your answer?

4. Toric ideal of log-linear models

Continue exploring the model $\mathcal{M}_{X_{1} \Perp X_{2}}$ with X_{1} binary and X_{2} ternary, with the design matrix B you derived in problem \#1.

- Give an example of a binomial in the ideal I_{B} of this model.
- What is the value of the sufficient statistic vector for the data point u from problem \#3?
- Can you find another synthetic data table, v, whose sufficient statistic [Hint: $B v$] has the same value?
- What is the explicit form of the monomials p^{u} and p^{v} in this example?
- Is it true that $p^{u}-p^{v} \in I_{B}$?
- Can you verify this on a computer?

